首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   2篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   6篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   5篇
  2008年   2篇
  2007年   1篇
  2004年   2篇
  1999年   1篇
排序方式: 共有35条查询结果,搜索用时 171 毫秒
1.
In the present work, separate and combined effects of excessive potassium and magnesium deficiency on safflower (Carthamus tinctorius) were studied. Four treatments were considered: C (control treatment: complete medium containing 1.5 mM Mg), +KCl (excessive potassium treatment: complete medium added with 60 mM KCl), ?Mg (Mg-deficient treatment: containing 0.1 mM Mg), and DS (double stress treatment: Mg-deficient medium (0.1 mM Mg) added with 60 mM KCl. Excessive potassium effect on plant growth was more pronounced than that of Mg deficiency. The two stresses impaired differently plant organs; KCl application affected more roots than shoots, whereas Mg deficiency reduced only leaf biomass. Gas exchange and pigment concentrations and patterns were severely impaired by KCl and mainly by interactive effects of the two stresses. This led to obvious lipid peroxidation and electrolyte leakage. Mg deficiency did not induce lipid peroxidation and electrolyte leakage, but as applied with excessive potassium, it doubled the effect of the latter. Mineral analyses showed that major cation nutrition was disturbed by KCl and combined stresses and at a lower level by magnesium deficiency. Plants did not show an enhanced selectivity of Mg and Ca over K but they improved their use efficiencies.  相似文献   
2.
Abderrazak, S. B., Oury, B, Lal, A. A., Bosseno, M.-F., Force-Barge, P., Dujardin, J.-P., Fandeur, T., Molez, J.-F., Kjellberg, F., Ayala, F. J., and Tibayrenc, M. 1999. Plasmodium falciparum: Population genetic analysis by multilocus enzyme electrophoresis and other molecular markers. Experimental Parasitology 92, 232-238. The population structure of Plasmodium falciparum, the agent of malignant malaria, is uncertain. We have analyzed multilocus enzyme electrophoresis (MLEE) polymorphisms at 7-12 gene loci in each of four populations (two populations in Burkina Faso, one in Sudan, one in Congo), plus one "cosmopolitan" sample consisting of parasite cultures from 15 distant localities in four different continents. We have also performed random amplified polymorphic DNA analysis (RAPD) and restriction fragment length polymorphism (RFLP) and characterized gene varia tion at four antigen genes in the Congo population. All genetic assays show abundant genetic variability in all populations analyzed. With the isoenzyme assays, strong linkage disequilibrium is apparent in at least two local populations, the Congo population and one population from Burkina Faso, as well as in the cosmopolitan sample, and less definitely in the other Burkina Faso population. However, no linkage disequilibrium is detected in the Congo population with the molecular assays. We failed to detect any nonrandom association between the different kinds of genetic markers; that is, MLEE with RAPD or RFLP, RAPD with RFLP, and so on. Although isoenzyme data show statistical departures from panmictic expectations, these results suggest that in the areas under survey, P. falciparum populations do not undergo predominant clonal evolution and show no clear-cut subdivisions, un like Trypanosoma cruzi, Leishmania sp., and other major parasitic species. We discuss the epidemiological and taxonomical significance of these results.  相似文献   
3.
Halophyte ability to withstand salt-triggered oxidative stress is governed by multiple biochemical mechanisms that facilitate retention and/or acquisition of water, protect chloroplast functioning, and maintain ion homeostasis. Most essential traits include the synthesis of osmolytes, specific proteins, and antioxidant molecules. This might explain the utilization of some halophytes as traditional medicinal and dietary plants. The present study aimed at assessing the phenolic content and antioxidant activities of some Tunisian halophytes (Cakile maritima, Limoniastrum monopetalum, Mesembryanthemum crystallinum, M. edule, Salsola kali, and Tamarix gallica), depending on biological (species, organ and developmental stage), environmental, and technical (extraction solvent) factors. The total polyphenol contents and antioxidant activities (DPPH and superoxide radicals scavenging activities, and iron chelating and reducing powers) were strongly affected by the above-cited factors. Such variability might be of great importance in terms of valorising these halophytes as a source of naturally secondary metabolites, and the methods for phenolic and antioxidant production.  相似文献   
4.

Background

Intravascular papillary endothelial hyperplasia (known also as Masson’s tumor) is a benign vascular lesion that commonly occurs in the skin and is rarely found in solid organs, especially in the kidney. In what follows, we will look into the first case of an unexpectedly diagnosed Masson’s tumor of the kidney presenting as a suspicious renal cyst.

Case presentation

A 61-year-old Arab man presented with a left renal cyst, incidentally revealed by ultrasonography. The laboratory values were unremarkable. Computed tomography and magnetic resonance imaging demonstrated a 38 mm left renal midportion Bosniak IV cyst. Our patient underwent a radical nephrectomy. Histopathology revealed the diagnosis of intravascular papillary endothelial hyperplasia. There was no recurrence detected after 9 years of follow-up.

Conclusions

Renal intravascular papillary endothelial hyperplasia is a rare benign tumor which can mimic a suspicious renal mass on radiological findings. Thus, this entity should be considered more often in the thick of the diagnostic possibilities in order to avoid unnecessary nephrectomies.
  相似文献   
5.
Hereditary multiple exostoses (HME) is an autosomal dominant orthopaedic disorder most frequently caused by mutations in the EXT1 gene. The aim of the present study is to determine the underlying molecular defect of HME in two multigenerational Tunisian families with 21 affected members and to examine the degree of intrafamilial variability. Linkage analysis was performed using three microsatellite markers encompassing the EXT1 locus and mutation screening was carried out by direct sequencing. In family 1, evidence for linkage to EXT1 was obtained on the basis of a maximum LOD score of 4.26 at θ = 0.00 with D8S1694 marker. Sequencing of the EXT1 revealed a heterozygous G > T transversion (c.1019G>T) in exon 2, leading to a missense mutation at the codon 340 (p.Arg340Leu). In family 2 we identified a novel heterozygous 1 bp deletion in the exon 1 (c.529_531delA) leading to a premature codon stop and truncated EXT1 protein expression (p.Lys177LysfsX15). This mutation was associated with the evidence of an intrafamilial clinical variability and considered to be a novel disease-causing mutation in the EXT1 gene. These findings provide additional support for the involvement of EXT1 gene in the HME disease.  相似文献   
6.
Impaired germination is common among halophyte seeds exposed to salt stress, partly resulting from the salt-induced reduction of the growth regulator contents in seeds. Thus, the understanding of hormonal regulation during the germination process is a main key: (i) to overcome the mechanisms by which NaCl-salinity inhibit germination; and (ii) to improve the germination of these species when challenged with NaCl. In the present investigation, the effects of ABA, GA3, NO3, and NH+4 on the germination of the oilseed halophyte Crithmum maritimum (Apiaceae) were assessed under NaCl-salinity (up to 200 mM NaCl). Seeds were collected from Tabarka rocky coasts (N-W of Tunisia). The exogenous application of GA3, nitrate (either as NaNO3 or KNO3), and NH4Cl enhanced germination under NaCl salinity. The beneficial impact of KNO3 on germination upon seed exposure to NaCl salinity was rather due to NO3 than to K+, since KCl failed to significantly stimulate germination. Under optimal conditions for germination (0 mM NaCl), ABA inhibited germination over time in a dose dependent manner, but KNO3 completely restored the germination parameters. Under NaCl salinity, the application of fluridone (FLU) an inhibitor of ABA biosynthesis, stimulated substantially seed germination. Taken together, our results point out that NO3 and GA3 mitigate the NaCl-induced reduction of seed germination, and that NO3 counteracts the inhibitory effect of ABA on germination of C. maritimum. To cite this article: A. Atia et al., C. R. Biologies 332 (2009).  相似文献   
7.
Magnesium nutrition is often forgotten, while its absence adversely affects numerous functions in plants. Magnesium deficiency is a growing concern for crop production frequently observed in lateritic and leached acid soils. Competition with other cations (Ca2+, Na+, and K+) is also found to be an essential factor, inducing magnesium deficiency in plants. This nutrient is required for chlorophyll formation and plays a key role in photosynthetic activity. Moreover, it is involved in carbohydrate transport from source-to-sink organs. Hence, sugar accumulation in leaves that results from the impairment of their transport in phloem is considered as an early response to Mg deficiency. The most visible effect is often recorded in root growth, resulting in a significant reduction of root/shoot ratio. Carbohydrate accumulation in source leaves is attributed to the unique chemical proprieties of magnesium. As magnesium is a nutrient with high mobility in plants, it is preferentially transported to source leaves to prevent severe declines in photosynthetic activity. In addition, Mg is involved in the source-to-sink transport of carbohydrates. Hence, an inverse relationship between Mg shortage and sugar accumulation in leaves is often observed. We hereby review all these aspects with a special emphasis on the role of Mg in photosynthesis and the structural and functional effects of its deficiency on the photosynthetic apparatus.  相似文献   
8.
Body fossils are described for the first time from the Upper Brioverian (Ediacaran–Fortunian) deposits of Central Brittany (NW France). The material consists of a dozen of specimens preserved on two slates, recently collected in a quarry in Saint‐Gonlay. The fossils, centimetric in size, have an elliptical and acuminated outline, with a peripheral bulge but without conspicuous concentric or radial lines. These body fossils are preserved in slates that are locally rich in grazing traces, sometimes associated with microbial mats. The sedimentological characteristics of these deposits correspond to a shallow marine shelf environment, with a low to moderate hydrodynamism. Such findings, in concomitance with previous ichnological discoveries, unravel the potential of the Brioverian strata from Brittany as a new locality to provide answers on Ediacaran and early Cambrian biocenoses.  相似文献   
9.
In the present work, we studied the effectiveness of the predominant halophytes of Soliman sabkha (Tecticornia indica and Suaeda fruticosa) to promote soil biological activities and ecosystem productivity. Soil Arylsulphatese ARY, β-glucosidase β-GLU, phosphatase PHO, invertase INV, urease URE, and dehydogenase DES activities in Extra- and Intra-tuft halophytes and plant productivity were assessed. Results revealed a high increase of microbial community and ARY, β-GLU, PHO, INV, URE and DES activities (+298%, +400%, +800%, +350%, +320%, +25% and +759%, respectively) in Intra-tuft rhizosphere as compared to Extra-tuft one, which is likely due to the significant decrease of salinity in the rhizosphere of Tecticornia indica and Suaeda fruticosa. Both perennial plants exhibited high productivities (7.4 t dry weight ha?1 and 2.2 t dry weight ha?1, respectively) and Na+-hyperaccumulating capacities (0.75 t Na+ ha?1 and 0.22 t Na+ ha?1, respectively), reducing salt constraint and favouring soil fertility. This constitutes a promising alternative to enhance productivity in such a salt-affected biotope by offering suitable microhabitat for annual glycophytes.  相似文献   
10.
Taking into account that oxidative stress is among the factors causing cancer-related death; chemoprevention which consists in using antioxidant substances such as phenolics could prevent cancer formation and progression. In the present study, phenolic contents and antioxidant activities of methanolic extracts from the halophyte Tamarix gallica shoots were determined. Moreover, the anticancer effect of this species on human colon cancer cells and the likely underlying mechanisms were also investigated. Shoot extracts showed an appreciable total phenolic content (85 mg GAE/g DW) and a high antioxidant activity (IC50 = 3.3 μg/ml for DPPH test). At 50 and 100 μg/ml, shoot, leaf, and flower extracts significantly inhibited Caco-2 cell growth. For instance, almost all plant part extracts inhibited cell growth by 62 % at the concentration 100 μg/ml. DAPI staining results revealed that these extracts decrease DNA synthesis and confirm their effect on Caco-2 cells proliferation, principally at 100 μg/ml. More importantly, cell mitosis was arrested at G2/M phase. The changes in the cell-cycle-associated proteins (cyclin B1, p38, Erk1/2, Chk1, and Chk2) are correlated with the changes in cell cycle distribution. Taken together, our data suggest that T. gallica is a promising candidate species to be used as a source of anticancer biomolecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号