首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2020年   2篇
  2016年   1篇
  2013年   2篇
排序方式: 共有5条查询结果,搜索用时 46 毫秒
1
1.
2.
3.
The beet cyst nematode Heterodera schachtii induces syncytia in the roots of Arabidopsis thaliana, which are its only nutrient source. One gene, At1g64110, that is strongly up‐regulated in syncytia as shown by RT‐PCR, quantitative RT‐PCR, in situ RT‐PCR and promoter::GUS lines, encodes an AAA+‐type ATPase. Expression of two related genes in syncytia, At4g28000 and At5g52882, was not detected or not different from control root segments. Using amiRNA lines and T‐DNA mutants, we show that At1g64110 is important for syncytium and nematode development. At1g64110 was also inducible by wounding, jasmonic acid, salicylic acid, heat and cold, as well as drought, sodium chloride, abscisic acid and mannitol, indicating involvement of this gene in abiotic stress responses. We confirmed this using two T‐DNA mutants that were more sensitive to abscisic acid and sodium chloride during seed germination and root growth. These mutants also developed significantly smaller roots in response to abscisic acid and sodium chloride. An in silico analysis showed that ATPase At1g64110 (and also At4g28000 and At5g52882) belong to the ‘meiotic clade’ of AAA proteins that includes proteins such as Vps4, katanin, spastin and MSP1.  相似文献   
4.
5.
The significance of fungal endophytes in African agriculture, particularly Kenya, has not been well investigated. Therefore, the objective of the present work was isolation, multi-gene phylogenetic characterization and biocontrol assessment of endophytic fungi harbored in tomato roots for nematode infection management. A survey was conducted in five different counties along the central and coastal regions of Kenya to determine the culturable endophytic mycobiota. A total of 76 fungal isolates were obtained and characterized into 40 operational taxonomic units based on the analysis of ITS, β-tubulin and tef1α gene sequence data. Among the fungal isolates recovered, the most prevalent species associated with tomato roots were members of the Fusarium oxysporum and F. solani species complexes. Of the three genes utilized for endophyte characterization, tef1α provided the best resolution. A combination of ITS, β-tubulin and tef1α resulted in a better resolution as compared to single gene analysis. Biotests demonstrated the ability of selected non-pathogenic fungal isolates to successfully reduce nematode penetration and subsequent galling as well as reproduction of the root-knot nematode Meloidogyne incognita. Most Trichoderma asperellum and F. oxysporum species complex isolates reduced root-knot nematode egg densities by 35–46 % as compared to the non-fungal control and other isolates. This study provides first insights into the culturable endophytic mycobiota of tomato roots in Kenya and the potential of some isolates for use against the root-knot nematode M. incognita. The data can serve as a framework for fingerprinting potential beneficial endophytic fungal isolates which are optimized for abiotic and biotic environments and are useful in biocontrol strategies against nematode pests in Kenyan tomato cultivars. This information would therefore provide an alternative or complementary crop protection component.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号