首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   1篇
  43篇
  2022年   1篇
  2021年   4篇
  2020年   1篇
  2018年   1篇
  2016年   1篇
  2013年   2篇
  2012年   2篇
  2011年   4篇
  2010年   3篇
  2009年   2篇
  2008年   6篇
  2007年   2篇
  2006年   3篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1990年   1篇
  1985年   2篇
  1982年   1篇
  1981年   1篇
排序方式: 共有43条查询结果,搜索用时 0 毫秒
1.
The effects of serum components and amino acids on the uptake and cytotoxicity of NiCl2 were examined in cultured Chinese hamster ovary (CHO) cells. CHO cells maintained in a minimal salts/glucose medium accumulated 10-fold more63Ni than did cells maintained in complete medium supplemented with 10% fetal bovine serum. Cell-surface binding of63Ni appeared to account for the majority of this increased accumulation of cell-associated nickel observed in the simple maintenance medium since such increases were reduced 70% by trypsin treatment. The addition of the Ni2+-binding amino acids cysteine or histidine to the salts/glucose medium markedly decreased63Ni accumulations, an effect not observed following addition of any of several amino acids that do not bind Ni2+. Supplementation of the salts/glucose medium with fetal bovine serum decreased in a concentration dependent fashion both the63Ni2+ uptake and cell detachment caused by Ni2+, while dialyzed (amino acid-free) serum was 3–5-fold less effective than undialyzed serum at reducing63Ni2+ uptake and similarly exhibited only a slight protective effect against nickel-induced cytotoxicity. Supplementation of dialyzed serum with cysteine at levels approximating those in whole serum partially restored its inhibitory activity toward nickel uptake by cells and restored completely its inhibition of nickel's cytotoxicity, indicating the predominant role of specific amino acids over serum proteins in regulating the uptake and subsequent cytotoxicity of Ni2+. Addition of cysteine to the salts/glucose medium during a 2 h exposure of cells to either 100 μM HgCl2 or 1 mM NiCl2 masked the cytotoxic effects of these metal ions. These results demonstrate the importance of extracellular small molecular weight metal ion chelators in altering the biological effects of metal ions at the level of metal uptake.  相似文献   
2.
3.
Low-affinity A2B adenosine receptors (A2B ARs), which are expressed in astrocytes, are mainly activated during brain hypoxia and ischaemia, when large amounts of adenosine are released. Cytokines, which are also produced at high levels under these conditions, may regulate receptor responsiveness. In the present study, we detected A2B AR in human astrocytoma cells (ADF) by both immunoblotting and real-time PCR. Functional studies showed that the receptor stimulated adenylyl cyclase through Gs proteins. Moreover, A2B ARs were phosphorylated and desensitized following stimulation of the receptors with high agonist concentration. Tumour necrosis factor alpha (TNF-alpha) treatment (24- h) increased A2B AR functional response and receptor G protein coupling, without any changes in receptor protein and mRNA levels. TNF-alpha markedly reduced agonist-dependent receptor phosphorylation on threonine residues and attenuated agonist-mediated A2B ARs desensitization. In the presence of TNF-alpha, A2B AR stimulation in vitro induced the elongation of astrocytic processes, a typical morphological hallmark of in vivo reactive astrogliosis. This event was completely prevented by the selective A2B AR antagonist MRS 1706 and required the presence of TNF-alpha. These results suggest that, in ADF cells, TNF-alpha selectively modulates A2B AR coupling to G proteins and receptor functional response, providing new insights to clarify the pathophysiological role of A2B AR in response to brain damage.  相似文献   
4.
Receptors for extracellular nucleotides (the P2X-calcium channels and the phospholipase C-coupled P2Y receptors) play key roles in pain signaling, but little is known on their function in trigeminal ganglia, whose hyperactivation leads to the development of migraine pain. Here we characterize calcium signaling via P2X(3) and P2Y receptors in primary mouse neuron-glia trigeminal cultures. Comparison with intact ganglion showed that, in dissociated cultures, sensory neurons retain, at least in part, their physical relationships with satellite glia. RT-PCR indicated expression of P2X(2)/P2X(3) (confirmed by immunocytochemistry) and of all cloned P2Y receptors. Single-cell calcium imaging with subtype-selective P2-agonists/antagonists revealed presence of functional neuronal P2X(3), as well as of ADP-sensitive P2Y(1,12,13) and UTP-activated P2Y(2)/P2Y(4) receptors on both neurons and glia. Calcium responses were much higher in glia, that also responded to UDP, suggesting functional P2Y(6) receptors. To study whether trigeminal ganglia P2 receptors are modulated upon treatment with pro-inflammatory agents, cultures were acutely (up to 3 min) or chronically (24 h) exposed to bradykinin. This resulted in potentiation of algogenic P2X(3) receptor-mediated calcium responses followed by their down-regulation at 24 h. At this exposure time, P2Y receptors responses in satellite glia were instead upregulated, suggesting a complex modulation of P2 receptors in pain signaling.  相似文献   
5.
6.
7.
A liquid chromatographic stationary phase containing immobilized membranes from cells expressing the P2Y-like receptor GPR17 is described. Cellular membranes from 1321N1 cells transiently transfected with GPR17 vector [GPR17(+)] and from the same cell line transfected with the corresponding empty vector [GPR17(−)] were entrapped on immobilized artificial membrane (IAM) support and packed into 6.6-mm-i.d. glass columns to create GPR17(+)-IAM and GPR17(−)-IAM stationary phases. Frontal chromatography experiments on both GPR17(+)-IAM and GPR17(−)-IAM demonstrated the presence of a specific interaction with GPR17 only in the former that was maximized by increasing the membrane/IAM ratio. GPR17(+)-IAM was used in frontal affinity chromatography experiments to calculate the dissociation constants (Kd) of three ligands—the antagonist cangrelor (formerly AR-C69931MX, a P2Y12/P2Y13 antagonist), MRS2179 (a P2Y1 receptor antagonist), and the agonist UDP—all of which have been reported to also interact with GPR17. Immobilized GPR17 retained its ability to specifically bind the three analytes, as demonstrated by the agreement of the calculated Kd values with previously reported data. Preliminary ranking experiments suggest the application of GPR17(+)-IAM in ranking affinity studies for the selection of new potential candidates.  相似文献   
8.
The developing and mature central nervous system contains neural precursor cells expressing the proteoglycan NG2. Some of these cells continuously differentiate to myelin-forming oligodendrocytes; knowledge of the destiny of NG2(+) precursors would benefit from the characterization of new key functional players. In this respect, the G protein-coupled membrane receptor GPR17 has recently emerged as a new timer of oligodendrogliogenesis. Here, we used purified oligodendrocyte precursor cells (OPCs) to fully define the immunophenotype of the GPR17-expressing cells during OPC differentiation, unveil its native signaling pathway, and assess the functional consequences of GPR17 activation by its putative endogenous ligands, uracil nucleotides and cysteinyl leukotrienes (cysLTs). GPR17 presence was restricted to very early differentiation stages and completely segregated from that of mature myelin. Specifically, GPR17 decorated two subsets of slowly proliferating NG2(+) OPCs: (i) morphologically immature cells expressing other early proteins like Olig2 and PDGF receptor-α, and (ii) ramified preoligodendrocytes already expressing more mature factors, like O4 and O1. Thus, GPR17 is a new marker of these transition stages. In OPCs, GPR17 activation by either uracil nucleotides or cysLTs resulted in potent inhibition of intracellular cAMP formation. This effect was counteracted by GPR17 antagonists and receptor silencing with siRNAs. Finally, uracil nucleotides promoted and GPR17 inhibition, by either antagonists or siRNAs, impaired the normal program of OPC differentiation. These data have implications for the in vivo behavior of NG2(+) OPCs and point to uracil nucleotides and cysLTs as main extrinsic local regulators of these cells under physiological conditions and during myelin repair.  相似文献   
9.
Oligodendrocyte precursor cells (OPCs, also called NG2 cells) are scattered throughout brain parenchyma, where they function as a reservoir to replace lost or damaged oligodendrocytes, the myelin-forming cells. The hypothesis that, under some circumstances, OPCs can actually behave as multipotent cells, thus generating astrocytes and neurons as well, has arisen from some in vitro and in vivo evidence, but the molecular pathways controlling this alternative fate of OPCs are not fully understood. Their identification would open new opportunities for neuronal replace strategies, by fostering the intrinsic ability of the brain to regenerate. Here, we show that the anti-epileptic epigenetic modulator valproic acid (VPA) can promote the generation of new neurons from NG2+ OPCs under neurogenic protocols in vitro, through their initial de-differentiation to a stem cell-like phenotype that then evolves to “hybrid” cell population, showing OPC morphology but expressing the neuronal marker βIII-tubulin and the GPR17 receptor, a key determinant in driving OPC transition towards myelinating oligodendrocytes. Under these conditions, the pharmacological blockade of the P2Y-like receptor GPR17 by cangrelor, a drug recently approved for human use, partially mimics the effects mediated by VPA thus accelerating cells’ neurogenic conversion. These data show a co-localization between neuronal markers and GPR17 in vitro, and suggest that, besides its involvement in oligodendrogenesis, GPR17 can drive the fate of neural precursor cells by instructing precursors towards the neuronal lineage. Being a membrane receptor, GPR17 represents an ideal “druggable” target to be exploited for innovative regenerative approaches to acute and chronic brain diseases.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号