首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   5篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   4篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   6篇
  2013年   8篇
  2012年   8篇
  2011年   8篇
  2010年   2篇
  2009年   3篇
  2008年   7篇
  2007年   2篇
  2006年   7篇
  2005年   5篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2000年   1篇
  1987年   1篇
排序方式: 共有79条查询结果,搜索用时 31 毫秒
1.
We focus on a case study along an English canal comparing environmental DNA (eDNA) metabarcoding with two types of electrofishing techniques (wade-and-reach and boom-boat). In addition to corroborating data obtained by electrofishing, eDNA provided a wider snapshot of fish assemblages. Given the semi-lotic nature of canals, we encourage the use of eDNA as a fast and cost-effective tool to detect and monitor whole fish communities.  相似文献   
2.
Polarization is a common feature of many types of cells, and we are beginning to understand how cells become polarized. The role of cell polarity in development and tissue morphogenesis, however, is much less well understood. Our previous analysis of the mosaic eyes (moe) mutations revealed that moe is required for retinal lamination and also suggested that zebrafish moe function is required in the retinal pigmented epithelium (RPE) for the proper localization of adjacent retinal cell divisions at the apical neuroepithelial surface. To understand the function of moe in the RPE, we cloned the moe locus and show that it encodes a novel FERM (for 4.1 protein, ezrin, radixin, moesin) domain-containing protein. Expression of moe in the eye, kidney, and brain reflects phenotypes found in moe(-) mutants, including RPE and retinal lamination defects, edema, and small or absent brain ventricles. We show that moe function is required for tight junction formation in the RPE. We suggest that moe may be a necessary component of the crumbs pathway that regulates apical cell polarity and also may play a role in photoreceptor morphogenesis.  相似文献   
3.
The structure and infectivity of the oocysts of a new species of Cryptosporidium from the feces of humans are described. Oocysts are structurally indistinguishable from those of Cryptosporidium parvum. Oocysts of the new species are passed fully sporulated, lack sporocysts. and measure 4.4-5.4 microm (mean = 4.86) x 4.4-5.9 microm (mean = 5.2 microm) with a length to width ratio 1.0-1.09 (mean 1.07) (n = 100). Oocysts were not infectious for ARC Swiss mice, nude mice. Wistar rat pups, puppies, kittens or calves, but were infectious to neonatal gnotobiotic pigs. Pathogenicity studies in the gnotobiotic pig model revealed significant differences in parasite-associated lesion distribution (P = 0.005 to P = 0.02) and intensity of infection (P = 0.04) between C. parvum and this newly described species from humans. In vitro cultivation studies have also revealed growth differences between the two species. Multi-locus analysis of numerous unlinked loci, including a preliminary sequence scan of the entire genome demonstrated this species to be distinct from C. parvum and also demonstrated a lack of recombination, providing further support for its species status. Based on biological and molecular data, this Cryptosporidium infecting the intestine of humans is proposed to be a new species Cryptosporidium hominis n. sp.  相似文献   
4.
China is under pressure to improve its agricultural productivity to keep up with the demands of a growing population with increasingly resource‐intensive diets. This productivity improvement must occur against a backdrop of carbon intensity reduction targets, and a highly fragmented, nutrient‐inefficient farming system. Moreover, the Chinese government increasingly recognizes the need to rationalize the management of the 800 million tonnes of agricultural crop straw that China produces each year, up to 40% of which is burned in‐field as a waste. Biochar produced from these residues and applied to land could contribute to China's agricultural productivity, resource use efficiency and carbon reduction goals. However competing uses for China's straw residues are rapidly emerging, particularly from bioenergy generation. Therefore it is important to understand the relative economic viability and carbon abatement potential of directing agricultural residues to biochar rather than bioenergy. Using cost‐benefit analysis (CBA) and life‐cycle analysis (LCA), this paper therefore compares the economic viability and carbon abatement potential of biochar production via pyrolysis, with that of bioenergy production via briquetting and gasification. Straw reincorporation and in‐field straw burning are used as baseline scenarios. We find that briquetting straw for heat energy is the most cost‐effective carbon abatement technology, requiring a subsidy of $7 MgCO2e?1 abated. However China's current bioelectricity subsidy scheme makes gasification (NPV $12.6 million) more financially attractive for investors than both briquetting (NPV $7.34 million), and pyrolysis ($?1.84 million). The direct carbon abatement potential of pyrolysis (1.06 MgCO2e per odt straw) is also lower than that of briquetting (1.35 MgCO2e per odt straw) and gasification (1.16 MgCO2e per odt straw). However indirect carbon abatement processes arising from biochar application could significantly improve the carbon abatement potential of the pyrolysis scenario. Likewise, increasing the agronomic value of biochar is essential for the pyrolysis scenario to compete as an economically viable, cost‐effective mitigation technology.  相似文献   
5.
6.
7.
8.
9.
The role of host factors in regulating bacterial transposition has never been comprehensively addressed, despite the potential consequences of transposition. Here, we describe a screen for host factors that influence transposition of IS903, and the effect of these mutations on two additional transposons, Tn10 and Tn552. Over 20,000 independent insertion mutants were screened in two strains of Escherichia coli; from these we isolated over 100 mutants that altered IS903 transposition. These included mutations that increased or decreased the extent of transposition and also altered the timing of transposition during colony growth. The large number of gene products affecting transposition, and their diverse functions, indicate that the overall process of transposition is modulated at many different steps and by a range of processes. Previous work has suggested that transposition is triggered by cellular stress. We describe two independent mutations that are in a gene required for fermentative metabolism during anaerobic growth, and that cause transposition to occur earlier than normal during colony development. The ability to suppress this phenotype by the addition of fumarate therefore provides direct evidence that transposition occurs in response to nutritional stress. Other mutations that altered transposition disrupted genes normally associated with DNA metabolism, intermediary metabolism, transport, cellular redox, protein folding and proteolysis and together these define a network of host proteins that could potentially allow readout of the cell's environmental and nutritional status. In summary, this work identifies a collection of proteins that allow the host to modulate transposition in response to cell stress.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号