首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  2022年   1篇
  2020年   1篇
  2016年   3篇
  2013年   1篇
  2012年   3篇
  2011年   4篇
  2010年   2篇
  2008年   1篇
  2005年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.

High efficient and repeatable in vitro regeneration protocol was established from embryo axis, half-seed, axillary meristem, and cotyledonary node explants of chickpea. Various concentrations and combinations of various plant growth regulators (PGRs) were employed to induce multiple shoots, shoot elongation and rooting of shoots to obtain complete plantlets of chickpea. The pretreatment of seeds with 6-benzyl aminopurine (BAP) at 1.0 mg l?1 was found to significantly increase the multiple shoot regeneration from the all explants tested. Among three PGRs such as BAP, kinetin (KIN) and thidiazuron (TDZ) tested for multiple shoot induction; BAP at 2.0 mg l?1 produced the maximum number of shoots in all tested explants. The maximum number of shoots (48.80 shoots/explant) was attained from the embryo axis explant followed by half-seed (32.76 shoots/explant), axillary meristem (28.34 shoots/explant) and cotyledonary node explant (18.47 shoots/explant) on medium augmented with 2.0 mg l?1 BAP along with 0.05 mg l?1 Indole-3-butyric acid (IBA). The optimum percentage of shoot elongation response was recorded (96.68%) on medium fortified with IAA (0.05 mg l?1), GA3 (1.0 mg l?1) and BAP (1.0 mg l?1) with an average shoot length of 8.82 cm. The elongated shoots were successfully rooted in medium augmented with 2.0 mg l?1 IBA. The complete plants were acclimatized in the greenhouse with a survival rate of 72%. The plantlets regenerated from four explants appeared to be morphologically similar to mother plants. The genetic fidelity of in vitro regenerated plants was evaluated using Start Codon Targeted and Inter simple sequence repeats molecular markers. The in vitro regenerated plants from all four explants were found to be the true to type with their mother plant. The in vitro protocol presented in the study should offer as a feasible system for chickpea genetic transformation.

  相似文献   
2.
The cellular localization and molecular interactions are indicative of functions of a protein. The development of a simple and efficient method for subcellular localization of a protein is indispensable to elucidate gene function in plants. In this study, we assessed the feasibility of Agrobacterium-mediated transformation (agroinfiltration) of tobacco and tomato leaf tissue to follow intracellular targeting of proteins from rice fused to green fluorescent protein (GFP). For this, a simple in planta assay for subcellular localization of rice proteins in the heterologous host systems of tobacco and tomato leaf via transient transformation was developed. We have tested the applicability of this method by expressing GFP fusions of the putative antiphagocytic protein 1 (APP1) (OsAPP, LOC_Os03g56930) and ZOS3-18-C2H2 zinc-finger protein (OsZF1, LOC_Os03g55540) from Oryza sativa L. subsp. japonica in tobacco and tomato leaf tissues. Our results demonstrate the suitability of GFP as a reporter in gene expression studies in tomato cv. MicroTom. The use of GFP-fused proteins from rice for subcellular targeting in the heterologous hosts of tobacco and tomato plant systems has been confirmed.Key words: agroinfiltration, confocal microscopy, GFP fusion protein, tomato cv, microtom  相似文献   
3.
Soil salinity is a major environmental stress limiting plant productivity. Vacuole Na+/H+ antiporters play important roles for the survival of plants under salt stress conditions. We have developed salt stress tolerant transgenic tomato plants (Solanum lycopersicum cv. PED) by overexpression of the wheat Na+/H+ antiporter gene TaNHX2 using Agrobacterium tumefaciens strain LBA4404 harbouring a binary vector pBin438 that contains the TaNHX2 gene under the control of double CaMV 35S promoter and npt II as a selectable marker. PCR and Southern blot analysis confirmed that TaNHX2 gene has been integrated and expressed in the T1 generation transgenic tomato plants. When TaNHX2 expressing plants were exposed to 100 or 150 mM NaCl, they were found to be more tolerant to salt stress compared to wild type plants. Biochemical analyses also showed that transgenic plants have substantial amount of relative water content and chlorophyll content under salt stress conditions compared to wild type plants. The relative water content in transgenic and wild type plants ranged from 68 to 75 % and 46–73 % and chlorophyll content fall in between 1.8 to 2.4 mg/g fw and 1.0 to 2.4 mg/g fw, respectively, in all stress conditions. In the present study, we observed a better germination rate of T1 transgenic seeds under salt stress conditions compared with wild type plants. Our results indicated that TaNHX2-transgenic tomato plants coped better with salt stress than wild type plants.  相似文献   
4.
Introduction – It is prerequisite and crucial to extract RNA with high quality and integrity in order to carry out molecular biology studies in any plant species of a family. Euphorbiaceae members are known for high levels of their waxes, oils with polysaccharides, polyphenolics and secondary metabolites. These conditions are recognised to interfere unfavourably with various methodologies of RNA isolation. Objective – To develop a simple, rapid and reproducible cetyltrimethylamonium bromide (CTAB)‐based protocol, to reduce the time and cost of extraction without reducing quality and yield of RNA extracted from various recalcitrant Euphorbiaceae member plant tissues such as from tree leaves (Hevea brasilensis), woody shrubs leaves (Ricinus communis, Jatropha curcas, Manihot esculenta) and storage root tissue (M. esculenta). Methodology – Simple modifications and fast steps were introduced to the original CTAB protocol. All centrifugation steps were carried out at 4°C at 12000 rpm for 10 min, the sample weight was decreased and usage of spermidine and LiCl was omitted, reducing incubation time prior to RNA precipitation. This rapid CTAB protocol was compared with various RNA isolation methods intended for use with plants rich in polysaccharides and secondary metabolites. Results – The procedure can be completed within 2 h and many samples can be processed at the same time. RNA of high quality could be isolated from all the tissues of species that we tried. The isolated RNA from different species served as a robust template for RT‐PCR analysis. Conclusion – The study has shown that the improvement of a CTAB‐based protocol allows the rapid isolation of high‐quality RNA from various recalcitrant Euphorbiaceae members. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
5.
6.
Photosystem II (PSII) of oxygen-evolving cyanobacteria, algae, and land plants mediates electron transfer from the Mn4Ca cluster to the plastoquinone pool. It is a dimeric supramolecular complex comprising more than 30 subunits per monomer, of which 16 are bitopic or peripheral, low-molecular-weight components. Directed inactivation of the plastid gene encoding the low-molecular-weight peptide PsbTc in tobacco (Nicotiana tabacum) does not prevent photoautotrophic growth. Mutant plants appear normal green, and levels of PSII proteins are not affected. Yet, PSII-dependent electron transport, stability of PSII dimers, and assembly of PSII light-harvesting complexes (LHCII) are significantly impaired. PSII light sensitivity is moderately increased and recovery from photoinhibition is delayed, leading to faster D1 degradation in ΔpsbTc under high light. Thermoluminescence emission measurements revealed alterations of midpoint potentials of primary/secondary electron-accepting plastoquinone of PSII interaction. Only traces of CP43 and no D1/D2 proteins are phosphorylated, presumably due to structural changes of PSII in ΔpsbTc. In striking contrast to the wild type, LHCII in the mutant is phosphorylated in darkness, consistent with its association with PSI, indicating an increased pool of reduced plastoquinone in the dark. Finally, our data suggest that the secondary electron-accepting plastoquinone of PSII site, the properties of which are altered in ΔpsbTc, is required for oxidation of reduced plastoquinone in darkness in an oxygen-dependent manner. These data present novel aspects of plastoquinone redox regulation, chlororespiration, and redox control of LHCII phosphorylation.  相似文献   
7.
Multiple shoots were induced from leaf explants of Lycopersicon esculentum cultivar MicroTom, within 20-25d, on MS medium supplemented with 8.9 microM benzylaminopurine (BAP)+1.14 microM indole-3-acetic acid (IAA). For rooting, elongated microshoots were excised and transferred onto MS medium supplemented with 4.9 microM indole-3-butyric acid (IBA). Well-developed roots and flower raceme were obtained on d 7 and 13, respectively, upon transfer of the microshoots onto rooting medium. The flowers self-fertilized in vitro and produced mature fruits in additional 15-17d of culture.  相似文献   
8.
Transgenic chilli pepper (Capsicum annuum L.) plants tolerant to salinity stress were produced by introducing the wheat Na+/H+ antiporter gene (TaNHX2) via Agrobacterium-mediated transformation. Cotyledonary explants were infected with Agrobacterium tumefaciens strain LBA4404 harboring a binary vector pBin438 that contains a wheat antiporter (TaNHX2) gene driven by the double CaMV 35S promoter and NPT II gene as a selectable marker. PCR and semiquantitative RT-PCR analysis confirmed that the TaNHX2 gene had been integrated and expressed in the T1 generation of transgenic pepper plants as compared to the non-transformed plants. Southern blot analysis further verified the integration and presence of TaNHX2 gene in the genome of chilli pepper plants. Biochemical assays of these transgenic plants revealed enhanced levels of proline, chlorophyll, superoxide dismutase, ascorbate peroxidase, relative water content, and reduced levels of hydrogen peroxide (H2O2), malondialdehyde compared to wild-type plants under salt stress conditions. The present investigation clearly showed that overexpression of the TaNHX2 gene enhanced salt stress tolerance in transgenic chilli pepper plants.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号