首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   211篇
  免费   11篇
  2023年   4篇
  2022年   4篇
  2021年   10篇
  2020年   7篇
  2019年   7篇
  2018年   11篇
  2017年   8篇
  2016年   13篇
  2015年   15篇
  2014年   11篇
  2013年   26篇
  2012年   25篇
  2011年   23篇
  2010年   11篇
  2009年   3篇
  2008年   5篇
  2007年   7篇
  2006年   5篇
  2005年   5篇
  2004年   5篇
  2003年   5篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1993年   2篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有222条查询结果,搜索用时 15 毫秒
1.
Global food security is one of the utmost essential challenges in the 21st century in providing enough food for the growing population while coping with the already stressed environment. High temperature (HT) is one of the main factors affecting plant growth, development and reproduction and causes male sterility in plants. In male reproductive tissues, metabolic changes induced by HT involve carbohydrates, lipids, hormones, epigenetics and reactive oxygen species, leading to male sterility and ultimately reducing yield. Understanding the mechanism and genes involved in these pathways during the HT stress response will provide a new path to improve crops by using molecular breeding and biotechnological approaches. Moreover, this review provides insight into male sterility and integrates this with suggested strategies to enhance crop tolerance under HT stress conditions at the reproductive stage.  相似文献   
2.
The current study was designed to evaluate the antioxidant, anticancer and antimicrobial activities of silver nanoparticles (AgNPs) biosynthesized by Spirulina platensis extract. The biosynthesized silver nanoparticles were characterized using Fourier transform infrared (FT-IR) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis. The antioxidant activity of the biosynthesized AgNPs were determined via DPPH radical scavenging assay while its anticancer activity was determined using the MTT assay. The antimicrobial activity of the biosynthesized AgNPs were analyzed by disc diffusion method. Spirulina platensis acts as a reducing and capping agent. The efficacy of silver nanoparticles (AgNPs) in inhibiting the growth of Gram-negative bacteria, specifically Acetobacter, Klebsiella, Proteus vulgaris, and Pseudomonas aeruginosa, was assessed by the utilisation of the diffusion method. The study aimed to evaluate the efficacy of biosynthesized silver nanoparticles (AgNPs) against many strains of Pseudomonas aeruginosa bacteria. The findings of the study revealed that when administered in doses of 50 μl, 75 μl, and 100 μl, the largest observed zone of inhibition corresponded to measurements of 10.5 mm, 14 mm, and 16 mm, respectively. A zone of inhibition with dimensions of 8 mm, 10.5 mm, and 12 mm was detected during testing against Acetobacter at concentrations of 50 μl, 75 μl, and 100 μl, respectively. The findings also indicate that there is a positive correlation between the concentration of AgNP and the DPPH scavenging ability of silver nanoparticles. The percentage of inhibition observed at concentrations of 500 μg/ml, 400 μg/ml, 300 μg/ml, 200 μg/ml, and 100 μg/ml were recorded as 80±1.98, 61±1.98, 52±1.5, 42±1.99, and 36±1.97, respectively. In addition, it was observed that the silver nanoparticles exhibited the greatest antioxidant activity at a concentration of 500 g/ml, with a measured value of 80.89±1.99. The IC-50 values, representing the inhibitory concentration required to achieve 50 % inhibition, were found to be 8.16, 19.15, 30.14, 41.13, and 63.11 at inhibition levels of 36±1.97, 42±1.99, 52±1.5, 61±1.98, and 80±1.98, respectively.  相似文献   
3.
Globally among biotic stresses, diseases like blight, rust and blast constitute prime constraints for reducing wheat productivity especially in Bangladesh. For sustainable productivity, the development of disease-resistant lines and high yielding varieties is vital and necessary. This study was conducted using 122 advanced breeding lines of wheat including 21 varieties developed by Bangladesh Wheat and Maize Research Institute (BAMRI) with aims to identify genotypes having high yield potential and resistance to leaf blight, leaf rust and blast diseases. These genotypes were evaluated for resistance against leaf blight and leaf rust at Dinajpur and wheat blast at Jashore under field condition. Out of 122 genotypes tested, 20 lines were selected as resistant to leaf blight based on the area under the diseases progress curve (AUDPC) under both irrigated timely sown (ITS) and irrigated late sown (ILS) conditions. Forty-two genotypes were found completely free from leaf rust infection, 59 genotypes were identified as resistant, and 13 genotypes were identified as moderately resistant to leaf rust. Eighteen genotypes were immune against wheat blast, 42 genotypes were categorized as resistant, and 26 genotypes were identified as moderately resistant to wheat blast. Molecular data revealed that the 16 genotypes showed a positive 2NS segment among the 18 immune genotypes selected against wheat blast under field conditions. The genotypes BAW 1322, BAW 1295, and BAW 1203 can be used as earlier maturing genotypes and the genotypes BAW 1372, BAW 1373, BAW 1297 and BAW 1364 can be used for lodging tolerant due to short plant height. The genotypes WMRI Gom 1, BAW 1349 and BAW 1350 can be selected for bold grain and the genotypes WMRI Gom 1, BAW 1297, BAW 1377 can be used as high yielder for optimum seeding condition but genotypes BAW 1377 and BAW 1366 can be used for late sown condition. The selected resistant genotypes against specific diseases can be used in the further breeding program to develop wheat varieties having higher disease resistance and yield potential.  相似文献   
4.
Cadmium (Cd) in soil–plant system can abridge plant growth by initiating alterations in root zones. Hydroponics and rhizoboxes are useful techniques to monitor plant responses against various natural and/or induced metal stresses. However, soil based studies are considered more appropriate in order to devise efficient food safety and remediation strategies. The present research evaluated the Cd-mediated variations in elemental dynamics of rhizospheric soil together with in planta ionomics and morpho-physio-biochemical traits of two differentially Cd responsive maize cultivars. Cd-sensitive (31P41) and Cd-tolerant (3062) cultivars were grown in pots filled with 0, 20, 40, 60 and 80 µg/kg CdCl2 supplemented soil. The results depicted that the maize cultivars significantly influenced the elemental dynamics of rhizosphere as well as in planta mineral accumulation under applied Cd stress. The uptake and translocation of N, P, K, Ca, Mg, Zn and Fe from rhizosphere and root cell sap was significantly higher in Cd stressed cv. 3062 as compared to cv. 31P41. In sensitive cultivar (31P41), Cd toxicity resulted in significantly prominent reduction of biomass, leaf area, chlorophyll, carotenoids, protein contents as well as catalase activity in comparison to tolerant one (3062). Analysis of tolerance indexes (TIs) validated that cv. 3062 exhibited advantageous growth and efficient Cd tolerance due to elevated proline, phenolics and activity of antioxidative machinery as compared to cv. 31P41. The cv. 3062 exhibited 54% and 37% less Cd bio-concentration (BCF) and translocation factors (TF), respectively in comparison to cv. 31P41 under highest Cd stress regime. Lower BCF and TF designated a higher Cd stabilization by tolerant cultivar (3062) in rhizospheric zone and its potential use in future remediation plans.  相似文献   
5.
Plant-derived dietary antioxidants have attracted considerable interest in recent past for their ability to induce apoptosis and regression of tumors in animal models. While it is believed that the antioxidant properties of these agents may contribute to lowering the risk of cancer induction by impeding oxidative injury to DNA, it could not account for apoptosis induction and chemotherapeutic observations. In this article, we show that dietary antioxidants can alternatively switch to a prooxidant action in the presence of transition metals such as copper. Such a prooxidant action leads to strand breaks in cellular DNA and growth inhibition in cancer cells. Further, the cellular DNA breakage and anticancer effects were found to be significantly enhanced in the presence of copper ions. Moreover, inhibition of antioxidant-induced DNA strand breaks and oxidative stress by Cu(I)-specific chelators bathocuproine and neocuproine demonstrated the role of endogenous copper in the induction of the prooxidant mechanism. Since it is well established that tissue, cellular, and serum copper levels are considerably elevated in various malignancies, such a prooxidant cytotoxic mechanism better explains the anticancer activity of dietary antioxidants against cancer cells.  相似文献   
6.
Heat shock protein induction is often associated with a cellular response to a harmful environment or to adverse life conditions. The main aims of our study were (1) to evaluate the cytotoxic potential of cypermethrin; and (2) to investigate the suitability of stress-induced heat shock protein Hsp70 as a biomarker for environmental pollutants in transgenic Drosophila melanogaster (Hsp70-lacZ)Bg9. Different concentrations of cypermethrin (0.002, 0.2, 0.5 and 50.0 p.p.m.) were mixed with food. Third instar larvae of transgenic Drosophila melanogaster were allowed to feed on these mixtures for different time intervals (2, 4, 6, 12, 24 and 48h). Following feeding, hsp70 induction and tissue damage were evaluated. In the highest concentration treatment group (50 p.p.m.), 100% larval mortality was recorded after 12 h exposure. Hsp70 was found to be induced even at the lowest concentration (0.002 p.p.m.) of the insecticide, while tissue damage was observed in the larvae exposed for 48 h. While an insignificant decline in hsp70 expression was observed in the larvae exposed to cypermethrin at a dietary concentration of 0.002 p.p.m. after 48 h compared with those exposed for 24 h, in the next two higher concentrations of the toxicant, a similar but significant decline in hsp70 expression was evident in the exposed larvae after 48 h. The present study reveals the cytotoxic potential of cypermethrin and further proposes that hsp70 induction in transgenic Drosophila melanogaster could be used as a sensitive biomarker in risk assessment.  相似文献   
7.

Background

There is little information about influenza among the Pakistani population. In order to assess the trends of Influenza-like-Illness (ILI) and to monitor the predominant circulating strains of influenza viruses, a country-wide lab-based surveillance system for ILI and Severe Acute Respiratory Illness (SARI) with weekly sampling and reporting was established in 2008. This system was necessary for early detection of emerging novel influenza subtypes and timely response for influenza prevention and control.

Methods

Five sentinel sites at tertiary care hospitals across Pakistan collected epidemiological data and respiratory samples from Influenza-like illness (ILI) and severe acute respiratory illness (SARI) cases from January 2008 to December 2011. Samples were typed and sub-typed by Real-Time RT-PCR assay.

Results

A total of 6258 specimens were analyzed; influenza virus was detected in 1489 (24%) samples, including 1066 (72%) Influenza type A and 423 (28%) influenza type B viruses. Amongst influenza A viruses, 25 (2%) were seasonal A/H1N1, 169 (16%) were A/H3N2 and 872 (82 %) were A(H1N1)pdm09. Influenza B virus circulation was detected throughout the year along with few cases of seasonal A/H1N1 virus during late winter and spring. Influenza A/H3N2 virus circulation was mainly observed during summer months (August-October).

Conclusions

The findings of this study emphasize the need for continuous and comprehensive influenza surveillance. Prospective data from multiple years is needed to predict seasonal trends for vaccine development and to further fortify pandemic preparedness.  相似文献   
8.
Respiratory syncytial virus (RSV) is the major cause of acute lower respiratory tract infections in young children, but very little is known about its epidemiology and circulating genotypes in Pakistan. This study analyzed the epidemiological and molecular characteristics of RSV genotypes detected in Pakistani children less than 2 years of age with acute respiratory tract infections (ARIs) in a tertiary care hospital in Gilgit Baltistan (GB) province during 2011-12 winter season. RSV was detected in 75 out of 105 children presenting with acute respiratory infection. Male infants between 2-6 months age made up the highest percentage of RSV positive cases. Epidemiological factors such as pre-maturity, mean weight, clinical features and diagnosis when compared between RSV positive and negative groups were found to be statistically insignificant. Phylogenetic analysis classified all 75 of the RSV strains into 71 strains of subgroups A and 4 strains of subgroup B, respectively. Strains belonging to subgroups A and B were further subdivided into NA1/GA2 and BA, respectively. The nucleotide and deduced amino acid sequence identities were relatively high among these strains (>90%). Both RSV-A and RSV-B isolates had two potential N-glycosylation sites in HVR2 of G protein and with heavy O-glycosylation of serine and threonine residues (G scores of 0.5-0.7). This report highlights the significance of RSV as a dominant viral etiologic agent of pediatric ARIs, and need for continued molecular epidemiological surveys for early detection of prevalent strains and newly emerging genotypes to understand epidemiology of RSV infections in various regions of Pakistan.  相似文献   
9.
10.
Biofabricated metal nanoparticles are generally biocompatible, inexpensive, and ecofriendly, therefore, are used preferably in industries, medical and material science research. Considering the importance of biofabricated materials, we isolated, characterized and identified a novel bacterial strain OS4 of Stenotrophomonas maltophilia (GenBank: JN247637.1). At neutral pH, this Gram negative bacterial strain significantly reduced hexavalent chromium, an important heavy metal contaminant found in the tannery effluents and minings. Subsequently, even at room temperature the supernatant of log phase grown culture of strain OS4 also reduced silver nitrate (AgNO3) to generate nanoparticles (AgNPs). These AgNPs were further characterized by UV–visible, Nanophox particle size analyzer, XRD, SEM and FTIR. As evident from the FTIR data, plausibly the protein components of supernatant caused the reduction of AgNO3. The cuboid and homogenous AgNPs showed a characteristic UV-visible peak at 428 nm with average size of ∼93 nm. The XRD spectra exhibited the characteristic Bragg peaks of 111, 200, 220 and 311 facets of the face centred cubic symmetry of nanoparticles suggesting that these nanoparticles were crystalline in nature. From the nanoparticle release kinetics data, the rapid release of AgNPs was correlated with the particle size and increasing surface area of the nanoparticles. A highly significant antimicrobial activity against medically important bacteria by the biofabricated AgNPs was also revealed as decline in growth of Staphylococcus aureus (91%), Escherichia coli (69%) and Serratia marcescens (66%) substantially. Additionally, different cytotoxic assays showed no toxicity of AgNPs to liver function, RBCs, splenocytes and HeLa cells, hence these particles were safe to use. Therefore, this novel bacterial strain OS4 is likely to provide broad spectrum benefits for curing chromium polluted sites, for biofabrication of AgNPs and ultimately in the nanoparticle based drug formulation for the treatment of infectious diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号