首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  3篇
  2015年   1篇
  2011年   1篇
  2009年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Understanding a wider range of genotype–phenotype associations can be achieved through ecological and evolutionary studies of traditional laboratory models. Here, we conducted the first large‐scale geographic analysis of genetic variation within and among wild zebrafish (Danio rerio) populations occurring in Nepal, India, and Bangladesh, and we genetically compared wild populations to several commonly used lab strains. We examined genetic variation at 1832 polymorphic EST‐based single nucleotide polymorphisms (SNPs) and the cytb mitochondrial gene in 13 wild populations and three lab strains. Natural populations were subdivided into three major mitochondrial DNA clades with an average among‐clade sequence divergence of 5.8%. SNPs revealed five major evolutionarily and genetically distinct groups with an overall FST of 0.170 (95% CI 0.105–0.254). These genetic groups corresponded to discrete geographic regions and appear to reflect isolation in refugia during past climate cycles. We detected 71 significantly divergent outlier loci (3.4%) and nine loci (0.5%) with significantly low FST values. Valleys of reduced heterozygosity, consistent with selective sweeps, surrounded six of the 71 outliers (8.5%). The lab strains formed two additional groups that were genetically distinct from all wild populations. An additional subset of outlier loci was consistent with domestication selection within lab strains. Substantial genetic variation that exists in zebrafish as a whole is missing from lab strains that we analysed. A combination of laboratory and field studies that incorporates genetic variation from divergent wild populations along with the wealth of molecular information available for this model organism provides an opportunity to advance our understanding of genetic influences on phenotypic variation for a vertebrate species.  相似文献   
2.
ABSTRACT. The apicoplast is a relict plastid found in many medically important apicomplexan parasites, such as Plasmodium and Toxoplasma. Phylogenetic analysis and the presence of four bounding membranes indicate that the apicoplast arose from a secondary endosymbiosis. Here we review what has been discovered about the complex journey proteins take to reach compartments of the apicoplast. The targeting sequences for luminal proteins are well‐defined, but those routing proteins to other compartments are only beginning to be studied. Recent work suggests that the trafficking mechanisms involve a variety of molecules of different phylogenetic origins. We highlight some remaining questions regarding protein trafficking to this divergent organelle.  相似文献   
3.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号