首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   146篇
  免费   13篇
  2023年   2篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2016年   2篇
  2015年   5篇
  2014年   4篇
  2013年   6篇
  2012年   9篇
  2011年   5篇
  2010年   4篇
  2009年   4篇
  2008年   13篇
  2007年   8篇
  2006年   5篇
  2005年   11篇
  2004年   9篇
  2003年   7篇
  2002年   6篇
  2001年   12篇
  2000年   5篇
  1999年   7篇
  1998年   4篇
  1997年   3篇
  1996年   2篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   5篇
  1991年   2篇
  1990年   3篇
  1987年   1篇
  1982年   2篇
  1978年   1篇
  1975年   1篇
排序方式: 共有159条查询结果,搜索用时 31 毫秒
1.
Cleavage and kinetic studies have been carried out using commercially obtained H-Tyr(tBu)-5-(4′-aminomethyl-3′,5′-dimethoxyphenoxy)valeric acid-TentaGelS (H-Tyr(tBu)-4-ADPV-TentaGelS) and H-Tyr (tBu)-4-ADPV-Ala-aminomethyl-resin (H-Tyr(tBu)-4-ADPV-AM-resin) prepared from commercially available resin and loaded with commercially available Fmoc-4-ADPV-OH amide anchor. Cleavage with pure trifluoroacetic acid (TFA) gave the intermediate H-Tyr-4-ADPV-NH2, which was then degraded to H-Tyr-NH2, and cleavage with TFA/dichloromethane (1:9) yielded H-Tyr-4-ADPV-NH2 which could be isolated in preparative amounts. Cleavage reactions with 15N-labelled H-Ala-4-ADPV-[15N]-Gly-AM-resin yielded the intermediate H-Ala-4-ADPV-NH2, which contained no 15N as demonstrated by 1H-NMR. The analysis of the commercial Fmoc-4-ADPV-OH amide anchor showed the presence of Fmoc-4-ADPV-4-ADPV-OH as an impurity in high amounts. This dimeric anchor molecule is the cause of formation of the anchor-linked peptide intermediate obtained during the cleavage from the resin. The particularly high acid-lability of the amide bond between the two ADPV moieties was utilized to synthesize sidechain and C-terminally 4-ADPV protected pentagastrin on a double-anchor resin, and to cleave it using 5% trifluoroacetic acid in dichloromethane. This method may offer a new way for the synthesis of protected peptide amides with improved solubility to be used in fragment condensation.  相似文献   
2.
C-terminal analogues of neuropeptide Y (NPY) of small molecular size have been synthesized. The influence of chain length, single or multiple amino acid substitution, and segment substitutions on receptor binding, pre- and postsynaptic biological activity, and conformational properties have been investigated. Receptor binding and in vivo assays revealed biological activity for NPY Ac-25-36 that increased with increasing alpha-helicity. In attempts to stabilize the alpha-helical content, three independent types of modified NPY Ac-25-36 analogues were synthesized. Strong agonistic activities could be detected in a series of discontinuous analogues, which are constructs of N-terminal parts linked via different spacer molecules to C-terminal segments. One of the most active molecules was NPY 1-4-Aca-25-36 (Aca, epsilon-aminocaproic acid). For the first time conformational properties of a series of small NPY analogues have been investigated by CD, and correlated with biological activity and receptor binding. A C-terminal dodecapeptide segment of NPY with an amount of 50% substitution to the native C-terminal sequence of NPY was found to exhibit significant receptor binding.  相似文献   
3.
C-terminal analogues of neuropeptide Y have been synthesized. The influence of chain length, single-amino-acid substitutions and segment substitutions on receptor binding, biological activity and conformational properties has been investigated. Receptor binding and in vivo assays revealed biological activity already for amino acids 28-36 of neuropeptide Y [neuropeptide Y-(Ac-28-36)-peptide] which increased with increasing chain length. Replacement of Arg25 in neuropeptide Y-(Ac-25-36)-peptide had no influence on binding, whereas Arg33 and Arg35 cannot be replaced by lysine or ornithine without considerable decrease in receptor binding. The introduction of conformational constraints by the 2-aminoisobutyric acid residue (Aib) in position 30 and replacing the amino acids 28-32 by Ala-Aib-Ala-Aib-Ala decreased receptor binding. However, the corresponding Aib-Ala-Aib-Ala-Aib-substituted analogue and a more flexible analogue with Gly5 at position 28-32 exhibited considerable affinity for the receptor. All these substitutions led to a decrease in postsynaptic activity. Strong agonistic activities could be detected in a series of 10 discontinuous analogues, which are constructs of N-terminal parts linked via different spacer molecules to C-terminal segments. One of the most active molecules was neuropeptide Y amino acids 1-4 linked to amino acids 25-36 through aminohexanoic acid (Ahx) [neuropeptide Y-(1-4-Ahx-25-36)-peptide].  相似文献   
4.
Fourteen elite sorghum lines were evaluated for their resistance to Striga hermonthica at three locations in Nigeria and Mali. Results showed that many of the lines especially MALISOR 84-1, SAMSORG 41, 97-SB-F5DT-64 (Keninkédié) and the check SRN 39 remained resistant to Striga in all locations with low emerged Striga counts, while SAMSORG 14 had the highest Striga infestation in all locations. Considerable variation in reaction to Striga infestation was observed on Séguètana, 97-SB-F5DT-63 (Wasa), 97-SB-F5DT-65, CMDT 38, CMDT 39 and CMDT 45 which were susceptible to Striga at Samaru, Nigeria but were resistant to Striga at both locations in Mali. Based on low Striga resistance and high grain yield, lines MALISOR 84-1, SAMSORG 41, 97-SB-F5DT-64, 97-SB-F5DT-65, CMDT 39 and SAMSORT 14 have been nominated for wider evaluation across more West African countries.  相似文献   
5.
6.
Prior studies have revealed that the sympathetic nervous system regulates the clinical and pathological manifestations of experimental autoimmune encephalomyelitis (EAE), an autoimmune disease model mediated by Th1 T cells. Although the regulatory role of catecholamines has been indicated in the previous works, it remained possible that other sympathetic neurotransmitters like neuropeptide Y (NPY) may also be involved in the regulation of EAE. Here we examined the effect of NPY and NPY receptor subtype-specific compounds on EAE, actively induced with myelin oligodendrocyte glycoprotein 35-55 in C57BL/6 mice. Our results revealed that exogenous NPY as well as NPY Y(1) receptor agonists significantly inhibited the induction of EAE, whereas a Y(5) receptor agonist or a combined treatment of NPY with a Y(1) receptor antagonist did not inhibit signs of EAE. These results indicate that the suppression of EAE by NPY is mediated via Y(1) receptors. Furthermore, treatment with the Y(1) receptor antagonist induced a significantly earlier onset of EAE, indicating a protective role of endogenous NPY in the induction phase of EAE. We also revealed a significant inhibition of myelin oligodendrocyte glycoprotein 35-55-specific Th1 response as well as a Th2 bias of the autoimmune T cells in mice treated with the Y(1) receptor agonist. Ex vivo analysis further demonstrated that autoimmune T cells are directly affected by NPY via Y(1) receptors. Taken together, we conclude that NPY is a potent immunomodulator involved in the regulation of the Th1-mediated autoimmune disease EAE.  相似文献   
7.
Angiotensin II (Ang II), a major regulator of cardiovascular function and body fluid homeostasis, mediates its biological actions via two subtypes of G protein-coupled receptors, termed AT(1) and AT(2). The primary goal of this study was to raise monoclonal anti-peptide antibodies specific to angiotensin AT(1)- and AT(2)-receptor subtypes and to Ang II itself and using these monoclonal antibodies to determine the intraadrenal localization of AT(1) and AT(2) receptors and Ang II in male adult rats. Immunocytochemistry unambiguously demonstrates a regional colocalization of Ang II and angiotensin II receptors in the adrenal gland. The novel antibodies localized Ang II and the AT(1) receptors to the zona glomerulosa of the cortex and to the medulla whereas AT(2) receptors were limited to the medulla. The specificity of immunostaining was documented by pre-adsorption of the antibody with the immunogenic peptide. Our data underscore that AT(1) appears to mediate most of the physiological actions of Ang II in adrenal. Western blot analysis of rat adrenal protein extracts using AT(1) antibody showed a predominant 73-kDa band and a weaker 97-kDa immunoreactive band corresponding to glycosylated forms of the AT(1) receptor. Immunostaining with anti-AT(2) yielded one major immunoreactive band of 73-kDa size and one additional fainter band of 120 kDa. These antibodies may prove of value in unraveling the subcellular localization and intracellular effector pathways of AT(1) and AT(2).  相似文献   
8.
The turn-inducing sequence Ala-Aib introduced into positions 31 and 32 of neuropeptide Y (NPY) and its analogues has been identified as the key structure for Y(5)-receptor selectivity. Analogues of NPY and PP/NPY chimera containing the motif Ala-Aib were prepared; these peptides turned out to be selective for the Y(5)-receptor. The affinity of the NPY-based peptides was in the range of 6-150 nM, while the affinity of three (Ala-Aib)-containing PP/NPY chimera was in the range of 0.2-0.9 nM. The circular dichroism spectra of the Aib analogues in aqueous solution were all characteristic of an alpha helix; however, they had different intensities of the two negative bands at 220 and 208 nm. Affinity and selectivity for the Y(5)-receptor were correlated with the ratio of the ellipticity at 220 nm versus the one at 208 nm (R), which indicates the presence of a pronounced helix (R > 1) versus a less stabile one (R < 1). When R was in the range 0.74-0.96, the affinity at the Y(5)-receptor was in the range >5 nM, while there was complete loss of affinity at the Y(4)-receptor. R > 1.15 was associated with very high affinity at the Y(5)-receptor and weak affinity at the Y(4)-receptor. These results suggest that the selectivity of the Ala(31)-Aib(32) motif for the Y(5)-receptor derives from a specific conformation that must be correlated with the bioactive conformation of NPY at this subtype.  相似文献   
9.
The neuropeptide Y-family receptor Y4 differs extensively between human and rat in sequence, receptor binding, and anatomical distribution. We have investigated the differences in binding profile between the cloned human, rat, and guinea pig Y4 receptors using NPY analogues with single amino acid replacements or deletion of the central portion. The most striking result was the increase in affinity for the rat receptor, but not for human or guinea pig, when amino acid 34 was replaced with proline; [Ahx(8-20),Pro(34)]NPY bound to the rat Y4 receptor with 20-fold higher affinity than [Ahx(8-20)]NPY. Also, the rat Y4 tolerates alanine in position 34 since p[Ala(34)]NPY bound with similar affinity as pNPY while the affinity for hY4 and gpY4 decreased about 50-fold. Alanine substitutions in position 33, 35, and 36 as well as the large loop-deletion, [Ahx(5-24)]NPY, reduced the binding affinity to all three receptors more than 100-fold. NPY and PYY competed with (125)I-hPP at Y4 receptors expressed in CHO cells according to a two-site model. This was investigated for gpY4 by saturation with either radiolabeled hPP or pPYY. The number of high-affinity binding-sites for (125)I-pPYY was about 60% of the receptors recognized by (125)I-hPP. Porcine [Ala(34)]NPY and [Ahx(8-20)]NPY bound to rY4 (but not to hY4 or gpY4) according to a two-site model. These results suggest that different full agonists can distinguish between different active conformations of the gpY4 receptor and that Y4 may display functional differences in vivo between human, guinea pig, and rat.  相似文献   
10.
Members of the neuropeptide Y (NPY) family regulate many physiological processes via interaction with at least four functional, pharmacologically distinct Y-receptors. However, selective antagonists developed for several subtypes have not been useful in defining particular Y-receptor functions in vivo. To identify critical residues within members of the NPY family required for Y-receptor subtype-selectivity we have determined the contribution of each residue within NPY to receptor binding by replacing them with L-alanine. In a second study, chimeric peptides where single or stretches of residues were interchanged between members of the NPY family were generated and tested in radioligand binding studies. Overall, substituted alanine analogues exhibited similar orders of affinities at each Y-receptor subtype with no obvious subtype-selectivity. Residues of particular interest are Leu30 which exhibited selectivity for the Y4-receptor, whereas Asp16 does not appear to play any role in ligand binding. Several chimeric peptides, e.g., [K4]pancreatic polypeptide ([K4]PP) and [RYYSA(19-23)]PP clearly showed higher affinity at the Y4 and Y5 subtypes compared to the Y1 and Y2 subtypes. In addition, the transfer of a proline residue from position 14 to 13 in peptide YY decreases its affinity at the Y1-, Y4- and Y5-receptors but is unchanged at the Y2 subtype. Combining these results, and with the help of molecular modelling, second generation chimeras were designed. The most significant improvement was achieved in chimera 2-36[K4,RYYSA(19-23)]PP where the affinity for the Y5 subtype increased by ninefold over that from NPY. Several of these compounds were also tested for their ability to stimulate food intake in a rat model. Interestingly, again 2-36[K4,RYYSA(19-23)]PP showed the most dramatic effect with a major increase on food intake over a range of doses compared to NPY suggesting a possible synergistic effect of several Y-receptors on feeding behaviour.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号