首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1100983篇
  免费   115575篇
  国内免费   594篇
  2018年   9983篇
  2016年   13503篇
  2015年   17967篇
  2014年   21239篇
  2013年   30536篇
  2012年   34008篇
  2011年   34803篇
  2010年   23822篇
  2009年   22029篇
  2008年   31189篇
  2007年   32470篇
  2006年   30380篇
  2005年   29296篇
  2004年   28988篇
  2003年   27811篇
  2002年   27357篇
  2001年   46711篇
  2000年   46790篇
  1999年   37684篇
  1998年   13918篇
  1997年   14049篇
  1996年   13301篇
  1995年   12421篇
  1994年   12031篇
  1993年   12109篇
  1992年   30862篇
  1991年   30174篇
  1990年   29503篇
  1989年   28814篇
  1988年   26608篇
  1987年   25431篇
  1986年   23940篇
  1985年   24055篇
  1984年   19775篇
  1983年   17248篇
  1982年   13287篇
  1981年   12176篇
  1980年   11229篇
  1979年   18866篇
  1978年   15062篇
  1977年   13646篇
  1976年   13049篇
  1975年   14568篇
  1974年   15820篇
  1973年   15643篇
  1972年   14336篇
  1971年   12918篇
  1970年   11245篇
  1969年   11110篇
  1968年   9898篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
3.
Squilla mantis hemocyanin is composed of two hexameric subunits but has electron microscopic profiles different from other bis-hexameric hemocyanins, e.g. Astacus and Homarus. We distinguished three different electron microscopic profiles of S. mantis hemocyanin: two sideviews and a topview. These profiles were studied using computer image alignment and correspondence analysis [Van Heel, M. and Frank, J. (1981) Ultramicroscopy 6, 187 - 194]. With the results of this analysis we were able to build a three-dimensional model for the quaternary structure of this hemocyanin. In this model the two hexamers are stacked in such a way that their hexagonal surfaces overlap to about 60% of their width. In the overlap area four subunits are arranged in two different interhexameric pairs, each forming a bridging area between the two hexamers.  相似文献   
4.
5.
6.
7.
A conceptual model is proposed, describing potential Zostera marina habitats in the Wadden Sea, based on reported data from laboratory, mesocosm and field studies. Controlling factors in the model are dynamics, degree of desiccation, turbidity, nutrients and salinity. A distinction has been made between a higher and a lower zone of potential habitats, each suitable for different morphotypes of Z. marina. The model relates the decline of Z. marina in the Wadden Sea to increased sediment and water dynamics, turbidity, drainage of sediments (resulting in increased degree of desiccation) and total nutrient loads during the twentieth century. The upper and lower delineation of both the higher and the lower zone of potential Z. marina habitats appear to be determined by one or a combination of several of these factors. Environmental changes in one of these factors will therefore influence the borderlines of the zones. The lower zone of Z. marina will be mainly affected by increased turbidity, sediment dynamics, degree of desiccation during low tide and nutrient load. The higher zone will be affected by increases in water and sediment dynamics, desiccation rates and nutrient loads. Potential Z. marina habitats are located above approx. –0.80 m mean sea level (when turbidity remains at the same level as in the early 1990s) in sheltered, undisturbed locations, and preferably where some freshwater influence is present. At locations with a high, near-marine, salinity, the nutrient load has to be low to allow the growth of Z. marina. The sediment should retain enough water during low tide to keep the plants moist. Our results suggest that the return of Z. marina beds within a reasonable time-scale will require not only suitable habitat conditions, but also revegetation measures, as the changes in the environment resulting from the disappearance of Z. marina may impede its recovery, and the natural import of propagules will be unlikely. Furthermore, the lower zone of Z. marina may require a genotype that is no longer found in the Wadden Sea. Received: 26 April 1999 / Received in revised form: 15 October 1999 / Accepted: 16 October 1999  相似文献   
8.
9.
The alga Analipus japonicus (Harv.) Wynne displays a distinct seasonal pattern in its development in Peter the Great Bay (Sea of Japan). In winter and spring, it occurs only in the form of basal crusts, and vertical axes develop in the summer–autumn period. It reproduces mostly asexually from July to November. Algae with unilocular sporangia occur very seldom, only in June and July.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号