首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   0篇
  国内免费   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   3篇
  1989年   4篇
  1988年   2篇
  1987年   1篇
  1986年   4篇
  1985年   1篇
  1983年   2篇
  1982年   4篇
  1981年   3篇
  1980年   3篇
  1979年   1篇
排序方式: 共有35条查询结果,搜索用时 31 毫秒
1.
马齿苋叶片PEPCase由四个相同的亚基组成,亚基分子量为83kD。远紫外CD光谱分析表明,此酶含有36.6%α—螺旋结构。马齿苋叶片PEPCase可被G6P激活,但不能被Gly、Ser激活。G6P可防止酶的尿素变性和枯草杆菌蛋白酶的作用。这种保护效应与G6P诱导的酶构象变化有关。 从酶对低温、高温及尿素的反应来看,马齿苋叶片PEPCase的稳定性高于高粱叶片PEP—Case,两者的免疫特性和电泳特性亦不同。  相似文献   
2.
本文报导高粱叶片的PEP羧化酶与一些代谢物相互作用的动力学特性。MgCl_2对不同PEP羧化酶同工酶表现程度不同的负协同性,Hill系数分别为0`86(PC Ⅰ)和0.47(PCⅡ)。PEP的饱和曲线呈S型。Hill系数为2.4,表现为正协同性。在不同浓度的G6P存在下,曲线的S型特性消失,Hill系数下降至1。而在不同浓度甘氨酸存在下负协同程度逐步增强,Hill系数为0.72。测定不同浓度G6P对酶活化程度的影响结果表明高浓度G6P(10 mM以上)活化程度反而下降,同时加入低浓度的甘氨酸(0.1~5 mM)能减缓高浓度G6P活化作用下降的程度。上述结果表明Mg~( )和PEP不仅作为底物或辅因子参与反应而且以同位协同的方式调节酶构象的变化,G6P和gly活化酶的作用类型是不同的。低浓度油酸(5~50 μM)对酶有强烈的抑制效应。高浓度Mg~( )不能解除其对酶的抑制。不同材料的酶对油酸反应不同。使高梁叶片PC Ⅰ活性完全抑制的油酸浓度(100 μM),对PCⅡ和小麦的PEP羧化酶活性几乎没有多大影响,表明油酸对高梁光合型PEP羧化酶的选择性抑制与Mg~( )的螯合作用无关。酶先后与Mg~( )或油酸预保温试验结果表明油酸可能作用于Mg~( )在酶蛋白上的调节位置。  相似文献   
3.
纯化的高梁叶片磷酸烯醇式丙酮酸羧化酶(PEP羧化酶)经不同浓度的盐酸胍处理变性失活后,在试验的蛋白浓度范围内,它的失活时间进程的动力学分析表明为一级反应。0.4 M盐酸胍处理25分钟后(O℃),酶的催化活性完全丧失,酶蛋白的远紫外圆二色性光谱、内源荧光光谱及免疫特异性等测定均表明酶的结构发生了深刻变化。甘油及PEP羧化酶的变构效应剂G6P和甘氨酸对酶在盐酸胍溶液中的变性作用有一定的保护效果。变性酶用复性缓冲液稀释20倍后,在最佳条件下,再经30分钟保温,酶的催化活性能恢复70%以上。G6P和甘氨酸能促进变性酶的复性,甘油亦有明显效果。随着酶活性的恢复,它的远紫外圆二色性、内源荧光及免疫特异性也随之恢复,变性酶的复性速率在常温下(25℃)比在低温下(0℃)要快得多。  相似文献   
4.
比较了照光和黑暗条件下玉米叶片果糖—6—磷酸激酶—2(PFK-2)和果糖—2,6—二磷酸酯酶(FBPase-2)的活力变化。当玉米植株从暗中转入光下后,其叶片PFK—2的活力随光照时间的延长而逐渐降低,而FBPase-2活力变化不明显;从光下转入暗后叶片PFK-2活力明显上升,FBPase-2活力仍无明显变化;其PFK-2/FBPase-2比值在光处理时下降,暗处理时上升。同时叶片中果糖—2,6—二磷酸的含量与PFK-2/FBPase-2活力比值的变化趋势一致。连续光照 20 h,PFK-2活力持续下降,表明PFK-2的光钝化现象与玉米植株的昼夜节律变化无关。  相似文献   
5.
菠菜叶片提取液经PEG-6000沉淀、DE-52离子交换柱层析及分子筛SephectylS-300凝胶过滤得到两种分子量不同的依赖ATP的磷酸果糖激酶(PFK)。一为大分子酸型,分子量大于2000kD,其活力可被Pi、3-PGA、柠檬酸激活,被PEP强烈抑制,Pi能减缓此抑制作用,Mg2+为必需金属离子,但其浓度高于0.5mmol/L时酶活力降低;一为小分子酸型,分子量为300kD,其活性受Pi、3-PGA、柠檬酸和PEP抑制,Mg2+亦为必需金属离子,Hill系数为0.67,表现负协同效应。实验证明小分子酸型可能存在叶绿体中,大分子酸型属于胞质酶。  相似文献   
6.
植物中D:果糖6—磷酸1—磷酸转移酶(PPi—PFK,EG 2.7.1.90)活性的调节是非常重要的。这主要是因为它能可逆催化糖酵解和生糖两个方向的反应。光照处理菠萝叶片或离体的菠萝叶圆片使PPi—PFK的酶活性增高。与从暗处理的叶片中提取的酶的特性相比,光照处理的叶片中的酶对糖酵解方向催化活性相对增加。暗处理导致酶催化精酵解方向活性的下降。这种反映在酶活性和特性上的变化可为光照重新恢复。结果表明,菠萝叶片的PPi—PFK对体内糖酵解或生糖途径的贡献可能决定于光的状况。  相似文献   
7.
番茄果实由绿转红的过程中,焦磷酸:果糖-6-磷酸1-磷酸转移酶(PFP)的酸型发生转化。在体外通过胰蛋白酶处理部分纯化的番茄绿果实中PFP来探讨酶型转化的原因。蛋白免疫印渍结果证实PFP的α-亚基比β-亚基更容易受到胰蛋白酶的降解,这也是PFP经胰蛋白酶处理后酵解与生糖活性下降的原因。然而PFP的亚基经尿素解离后,以胰蛋白酶处理的蛋白免疫印渍分析却表明PFP的两种亚基均被胰蛋白酶更加有效地降解,显然α-亚基在PFP的高级结构中有更多的酶切位点外露,而β-亚基上的酶切酶点可能位于分子的内部受到有效的保护。  相似文献   
8.
本文报导高梁(C_4植物)和小麦(C_3)植物绿色和黄化叶片中PEP羧化酶的一些特性的比较研究。结果表明不同材料叶片的PEP羧化酶对一些代谢物的反应不同。高梁绿色叶片的PEP羧化酶为G6P、Gly和FDP所激活,为油酸和柠檬酸所抑制。G6P、Gly和FDP对小麦叶片(绿色和黄化叶)、高粱黄化叶片的PEP羧化酶则均无激活作用,油酸和柠檬酸的抑制效应也消失或者下降。 比较这些不同来源的PEP羧化酶在DEAE——纤维素柱层析的结果表明它们具有不同的离子特性。在高粱绿色叶片中分得两种具有不同物理学和动力学特性的PEP羧化酶同功酶(PCⅠ;PCⅡ)。它们的Km(PEP)值各为1.66毫克分子和0.181毫克分子。PCⅡ对G6P的反应较迟钝。从NaCl洗脱梯度、聚丙烯酰胺凝胶电泳和对变构效应剂的反应来看,PCⅡ的一些特性接近于小麦的PE羧化酶。  相似文献   
9.
应用化学修饰的方法观察精氨酸残基在PEP羧化酶的催化和调节功能中的作用。用丁二酮在硼酸盐缓冲液存在下处理PEP羧化酶使酶活性迅速丧失。其失活速度表现为拟一级反应动力学特性。 低温处理(15℃),或者PEP、G6P、甘氨酸,苹果酸,G6P加甘氨酸和PEP加甘氨酸等酶的底物和效应剂的存在对酶的丁二酮失活均具不同程度的保护作用。PEP和G6P的P_(0.5)值各为4mM和1.5mM。 丁二酮对酶的修饰表现为可逆失活。在Tris-H_2SO_4缓冲液中透析可使被丁二酮修饰而丧失的酶活性恢复。 丁二酮处理还使酶失去对G6P的敏感性,但不影响甘氨酸对酶的调节作用。低温(15℃)下丁二酮修饰酶的G6P脱敏速度比常温下(30℃)底物保护的修饰酶的G6P脱敏速度慢。比较脱敏速度常数(k_(dG6P))前者是0.0116(分~(-1)),后者是0.0562(分~(-1))。甘氨酸的加入不影响底物保护的修饰酶的G6P脱敏速度而明显降低酶的丁二酮失活速度。 这些结果表明精氨酸残基不仅存在于酶的催化部位并为酶的催化所必需,同时还存在于酶的G6P结合部位而参与G6P对酶的调节功能。  相似文献   
10.
这次植物代谢讨论会上共有20位同志作了报告,包括综合评论和研究论文共31篇。吕忠恕先生介绍了国外果实成熟与呼吸代谢的进展,李明启先生介绍了绿色光合细胞的呼吸代谢的进展。研究论文包括: 1.酶的活性和形成的调节(7篇)。其中有:吴相钰等报告了叶绿体中RuBP羧化酶和FDP酶体外活化受某些还原剂的调节。施教耐、吴敏贤等  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号