首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   339篇
  免费   47篇
  386篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   6篇
  2020年   4篇
  2019年   8篇
  2018年   17篇
  2017年   20篇
  2016年   15篇
  2015年   12篇
  2014年   30篇
  2013年   46篇
  2012年   37篇
  2011年   41篇
  2010年   51篇
  2009年   26篇
  2008年   21篇
  2007年   5篇
  2006年   3篇
  2005年   1篇
  2004年   8篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1998年   1篇
  1997年   4篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1980年   3篇
  1976年   1篇
  1973年   2篇
  1971年   1篇
排序方式: 共有386条查询结果,搜索用时 15 毫秒
1.
2.
The Earth is experiencing historically unprecedented rates of warming, with surface temperatures projected to increase by 3–5 °C globally, and up to 7.5 °C in high latitudes, within the next century. Knowledge of how this will affect biological systems is still largely restricted to the lower levels of organization (e.g. species range shifts), rather than at the community, food web or ecosystem level, where responses cannot be predicted from studying single species in isolation. Further, many correlational studies are confounded with time and/or space, whereas experiments have been mostly confined to laboratory microcosms that cannot capture the true complexity of natural ecosystems. We used a ‘natural experiment’ in an attempt to circumvent these shortcomings, by characterizing community structure and trophic interactions in 15 geothermal Icelandic streams ranging in temperature from 5 °C to 45 °C. Even modest temperature increases had dramatic effects across multiple levels of organization, from changes in the mean body size of the top predators, to unimodal responses of species populations, turnover in community composition, and lengthening of food chains. Our results reveal that the rates of warming predicted for the next century have serious implications for the structure and functioning of these fragile ‘sentinel’ ecosystems across multiple levels of organization.  相似文献   
3.

Background

Observers respond more accurately to targets in visual search tasks that share properties with previously presented items, and transient attention can learn featural consistencies on a precue, irrespective of its absolute location.

Methodology/Principal Findings

We investigated whether such attentional benefits also apply to temporal consistencies. Would performance on a precued Vernier acuity discrimination task, followed by a mask, improve if the cue-lead times (CLTs; 50, 100, 150 or 200 ms) remained constant between trials compared to when they changed? The results showed that if CLTs remained constant for a few trials in a row, Vernier acuity performance gradually improved while changes in CLT from one trial to the next led to worse than average discrimination performance. The results show that transient attention can quickly adjust to temporal regularities, similarly to spatial and featural regularities. Further experiments show that this form of learning is not under voluntary control.

Conclusions/Significance

The results add to a growing literature showing how consistency in visual presentation improves visual performance, in this case temporal consistency.  相似文献   
4.
The location of major quantitative trait loci (QTL) contributing to stem and leaf [Na+] and [K+] was previously reported in chromosome 7 using two connected populations of recombinant inbred lines (RILs) of tomato. HKT1;1 and HKT1;2, two tomato Na+‐selective class I‐HKT transporters, were found to be closely linked, where the maximum logarithm of odds (LOD) score for these QTLs located. When a chromosome 7 linkage map based on 278 single‐nucleotide polymorphisms (SNPs) was used, the maximum LOD score position was only 35 kb from HKT1;1 and HKT1;2. Their expression patterns and phenotypic effects were further investigated in two near‐isogenic lines (NILs): 157‐14 (double homozygote for the cheesmaniae alleles) and 157‐17 (double homozygote for the lycopersicum alleles). The expression pattern for the HKT1;1 and HKT1;2 alleles was complex, possibly because of differences in their promoter sequences. High salinity had very little effect on root dry and fresh weight and consequently on the plant dry weight of NIL 157‐14 in comparison with 157‐17. A significant difference between NILs was also found for [K+] and the [Na+]/[K+] ratio in leaf and stem but not for [Na+] arising a disagreement with the corresponding RIL population. Their association with leaf [Na+] and salt tolerance in tomato is also discussed.  相似文献   
5.
Increased understanding of the species–area relationship (SAR) can improve its usefulness as a tool for prediction of species loss for biodiversity conservation targets. This study was conducted: (i) to determine the best plant attribute for the SAR in the community of arthropods living within the grass Muhlenbergia robusta; (ii) to determine the contribution of phenophases of plant foliage (dry and fresh), shade and conspecific distance to the variation in arthropod richness within the plant; (iii) to determine the best functional model of changes in the abundance, diversity and biomass in communities of arthropods in response to increases in plant size; (iv) to determine the best host‐plant attribute for prediction of these community attributes; and (v) to determine the effect of the plant phenophase, shade and M. robusta isolation on the abundance, diversity and biomass of the arthropod community. The above‐ground dry weight of grass was found to be the best host‐plant attribute for the SAR, while the light environment explained the arthropod richness within the grass, with higher richness observed in shaded environments. This study also showed that the best functional mathematical models for estimation of changes in the abundance, dry weight and diversity of arthropods in response to increases in grass size (dry weight) are the power model, exponential model and logarithmic model, respectively. Furthermore, the host‐plant foliage phenophase, shade and the isolation of M. robusta with other conspecifics had no effect on the abundance, biomass or diversity per basal area of the grass.  相似文献   
6.
Abstract: Certain birds use mammal hair for the lining or structural strengthening of their nest. As a result, many bird nests can be regarded as natural hair snares. Preliminary studies indicate that analyses of hairs found in birds' nests are an effective method for detecting and identifying mammals that live in or migrate through an area and could be a useful tool to gain information about rare or hard to detect mammals. I documented 27 mammal taxa that were identified from hair collected from >3,000 nests. This study summarizes the results of 4 projects that represent application of this technique. This noninvasive method appears to be a useful tool for easily accessing basic faunistical data about mammal fauna of the given area.  相似文献   
7.
Global warming is widely predicted to reduce the biomass production of top predators, or even result in species loss. Several exceptions to this expectation have been identified, however, and it is vital that we understand the underlying mechanisms if we are to improve our ability to predict future trends. Here, we used a natural warming experiment in Iceland and quantitative theoretical predictions to investigate the success of brown trout as top predators across a stream temperature gradient (4–25 °C). Brown trout are at the northern limit of their geographic distribution in this system, with ambient stream temperatures below their optimum for maximal growth, and above it in the warmest streams. A five‐month mark‐recapture study revealed that population abundance, biomass, growth rate, and production of trout all increased with stream temperature. We identified two mechanisms that contributed to these responses: (1) trout became more selective in their diet as stream temperature increased, feeding higher in the food web and increasing in trophic position; and (2) trophic transfer through the food web was more efficient in the warmer streams. We found little evidence to support a third potential mechanism: that external subsidies would play a more important role in the diet of trout with increasing stream temperature. Resource availability was also amplified through the trophic levels with warming, as predicted by metabolic theory in nutrient‐replete systems. These results highlight circumstances in which top predators can thrive in warmer environments and contribute to our knowledge of warming impacts on natural communities and ecosystem functioning.  相似文献   
8.
Leaf longevity and nutrient resorption efficiency are important strategies to conserve plant nutrients. Theory suggests a negative relationship between them and also proposes that high concentration of phenolics in long‐lived leaves may reduce nutrient resorption. In order to provide new evidence on these relationships, we explored whether N‐resorption efficiency is related to leaf longevity, secondary compounds and other leaf traits in coexisting plant species of different life forms in the arid Patagonian Monte, Argentina. We assessed N‐resorption efficiency, green leaf traits (leaf mass per area (LMA), leaf longevity and lignin, total soluble phenolics and N concentrations) and N concentration in senescent leaves of 12 species of different life forms (evergreen shrubs, deciduous shrubs and perennial grasses) with contrasting leaf traits. We found that leaf longevity was positively correlated to LMA and lignin, and negatively correlated to N concentration in green leaves. N concentrations both in green and senescent leaves were positively related. N‐resorption efficiency was not associated with the concentration of secondary compounds (total soluble phenolics and lignin) but it was negatively related to LMA and leaf longevity and positively related to N concentration in green leaves. Furthermore, leaf traits overlapped among life forms highlighting that life forms are not a good indicator of the functional properties (at least in relation to nutrient conservation) of species. In conclusion, our findings indicated that differences in N‐resorption efficiency among coexisting species were more related to N concentration in green leaves, leaf lifespan and LMA than to the presence of secondary compounds at least those assessed in our study (soluble phenolics and lignin). Accordingly, N‐resorption efficiency seems to be modulated, at least in part, by the productivity–persistence trade‐off.  相似文献   
9.
Gross primary production (GPP) is the largest flux in the carbon cycle, yet its response to global warming is highly uncertain. The temperature dependence of GPP is directly linked to photosynthetic physiology, but the response of GPP to warming over longer timescales could also be shaped by ecological and evolutionary processes that drive variation in community structure and functional trait distributions. Here, we show that selection on photosynthetic traits within and across taxa dampens the effects of temperature on GPP across a catchment of geothermally heated streams. Autotrophs from cold streams had higher photosynthetic rates and after accounting for differences in biomass among sites, biomass‐specific GPP was independent of temperature in spite of a 20 °C thermal gradient. Our results suggest that temperature compensation of photosynthetic rates constrains the long‐term temperature dependence of GPP, and highlights the importance of considering physiological, ecological and evolutionary mechanisms when predicting how ecosystem‐level processes respond to warming.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号