全文获取类型
收费全文 | 495篇 |
免费 | 37篇 |
国内免费 | 19篇 |
专业分类
551篇 |
出版年
2024年 | 6篇 |
2023年 | 10篇 |
2022年 | 12篇 |
2021年 | 10篇 |
2020年 | 20篇 |
2019年 | 21篇 |
2018年 | 18篇 |
2017年 | 15篇 |
2016年 | 22篇 |
2015年 | 25篇 |
2014年 | 25篇 |
2013年 | 49篇 |
2012年 | 17篇 |
2011年 | 34篇 |
2010年 | 32篇 |
2009年 | 33篇 |
2008年 | 31篇 |
2007年 | 29篇 |
2006年 | 26篇 |
2005年 | 20篇 |
2004年 | 21篇 |
2003年 | 17篇 |
2002年 | 15篇 |
2001年 | 12篇 |
2000年 | 2篇 |
1999年 | 5篇 |
1998年 | 4篇 |
1997年 | 4篇 |
1996年 | 5篇 |
1995年 | 3篇 |
1993年 | 1篇 |
1992年 | 2篇 |
1991年 | 1篇 |
1990年 | 1篇 |
1988年 | 1篇 |
1984年 | 1篇 |
1982年 | 1篇 |
排序方式: 共有551条查询结果,搜索用时 12 毫秒
1.
The field of plant cell wall biology is constantly growing and consequently so is the need for more sensitive and specific probes for individual wall components. Xyloglucan is a key polysaccharide widely distributed in the plant kingdom in both structural and storage tissues that exist in both fucosylated and non-fucosylated variants. Presently, the only xyloglucan marker available is the monoclonal antibody CCRC-M1 that is specific to terminal alpha-1,2-linked fucosyl residues on xyloglucan oligo- and polysaccharides. As a viable alternative to searches for natural binding proteins or creation of new monoclonal antibodies, an approach to select xyloglucan-specific binding proteins from a combinatorial library of the carbohydrate-binding module, CBM4-2, from xylanase Xyn10A of Rhodothermus marinus is described. Using phage display technology in combination with a chemoenzymatic method to anchor xyloglucan to solid supports, the selection of xyloglucan-binding modules with no detectable residual wild-type xylan and beta-glucan-binding ability was achieved. 相似文献
2.
3.
XiaoYan Zhou ChangJiang Ying Bin Hu YuSheng Zhang Tian Gan YanDong Zhu Nan Wang AnAn Li YuanJian Song 《Aging cell》2022,21(2)
In this study, we explored the precise mechanisms underlying the receptor for advanced glycation end products (RAGE)‐mediated neuronal loss and behavioral dysfunction induced by hyperglycemia. We used immunoprecipitation (IP) and GST pull‐down assays to assess the interaction between RAGE and mitogen‐activated protein kinase kinase 3 (MKK3). Then, we investigated the effect of specific mutation of RAGE on plasticity at hippocampal synapses and behavioral deficits in db/db mice through electrophysiological recordings, morphological assays, and behavioral tests. We discovered that RAGE binds MKK3 and that this binding is required for assembly of the MEKK3‐MKK3‐p38 signaling module. Mechanistically, we found that activation of p38 mitogen‐activated protein kinase (MAPK)/NF‐κB signaling depends on mediation of the RAGE‐MKK3 interaction by C‐terminal RAGE (ctRAGE) amino acids (AAs) 2‐5. We found that ctRAGE R2A‐K3A‐R4A‐Q5A mutation suppressed neuronal damage, improved synaptic plasticity, and alleviated behavioral deficits in diabetic mice by disrupting the RAGE‐MKK3 conjugation. High glucose induces direct binding of RAGE and MKK3 via ctRAGE AAs 2‐5, which leads to assembly of the MEKK3‐MKK3‐p38 signaling module and subsequent activation of the p38MAPK/NF‐κB pathway, and ultimately results in diabetic encephalopathy (DE). 相似文献
4.
Specific recognition of saturated and 4,5-unsaturated hexuronate sugars by a periplasmic binding protein involved in pectin catabolism 总被引:1,自引:0,他引:1
The process of pectin depolymerization by pectate lyases and glycoside hydrolases produced by pectinolytic organisms, particularly the phytopathogens from the genus Erwinia, is reasonably well understood. Indeed each extracellular and intracellular catabolic stage has been identified using either genetic, bioinformatic or biochemical approaches. Nevertheless, the molecular details of many of these stages remain unknown. In particular, the mechanism and ligand binding profiles for the transport of pectin degradation products between cellular compartments remain entirely uninvestigated. Here we present the structure of TogB, a 45.7 kDa periplasmic binding protein from Yersinia enterocolitica. This protein is a component of the TogMNAB ABC transporter involved in the periplasmic transport of oligogalacturonides. In addition to the unliganded complex (at 2.2 A), we have also determined the structures of TogB in complex with digalacturonic acid (at 2.2 A), trigalacturonic acid (at 1.8 A) and 4,5-unsaturated digalacutronic acid (at 2.3 A). The molecular determinants of oligogalacturonide binding include a novel salt-bridge between the non-reducing sugar uronate group, selectivity for the unsaturated ligand, and the overall sugar configuration. Complementing this are UV difference and isothermal titration calorimetry experiments that highlight the thermodynamic basis of ligand specificity. The ligand binding profiles of the TogMNAB transporter complex nicely complement pectate lyase-mediated pectin degradation, which is a significant component of pectin depolymerization reactions. 相似文献
5.
Saccharophagus degradans belongs to a recently discovered group of marine bacteria equipped with an arsenal of sugar cleaving enzymes coupled to carbohydrate-binding domains to degrade various insoluble complex polysaccharides. The modular Sde-1182 protein consists of a family 2 carbohydrate binding module linked to a X158 domain of unknown function. The 1.9 Å and 1.55 Å resolution crystal structures of the isolated X158 domain bound to the two related polyisoprenoid molecules, ubiquinone and octaprenyl pyrophosphate, unveil a β-barrel architecture reminiscent of the YceI-like superfamily that resembles the architecture of the lipocalin fold. This unprecedented association coupling oxidoreduction and carbohydrate recognition events may have implications for effective nutrient uptake in the marine environment. 相似文献
6.
Francis P Martinez DM Taghipour F Bowen BD Haynes CA 《Biotechnology and bioengineering》2006,95(6):1207-1217
Controlled shear affinity filtration (CSAF) is a novel integrated processing technology that positions a rotor directly above an affinity membrane chromatography column to permit protein capture and purification directly from cell culture. The conical rotor is intended to provide a uniform and tunable shear stress at the membrane surface that inhibits membrane fouling and cell cake formation by providing a hydrodynamic force away from and a drag force parallel to the membrane surface. Computational fluid dynamics (CFD) simulations are used to show that the rotor in the original CSAF device (Vogel et al., 2002) does not provide uniform shear stress at the membrane surface. This results in the need to operate the system at unnecessarily high rotor speeds to reach a required shear stress of at least 0.17 Pa at every radial position of the membrane surface, compromising the scale-up of the technology. Results from CFD simulations are compared with particle image velocimetry (PIV) experiments and a numerical solution for low Reynolds number conditions to confirm that our CFD model accurately describes the hydrodynamics in the rotor chamber of the CSAF device over a range of rotor velocities, filtrate fluxes, and (both laminar and turbulent) retentate flows. CFD simulations were then carried out in combination with a root-finding method to optimize the shape of the CSAF rotor. The optimized rotor geometry produces a nearly constant shear stress of 0.17 Pa at a rotational velocity of 250 rpm, 60% lower than the original CSAF design. This permits the optimized CSAF device to be scaled up to a maximum rotor diameter 2.5 times larger than is permissible in the original device, thereby providing more than a sixfold increase in volumetric throughput. 相似文献
7.
8.
We previously reported that the LG4 domain of the laminin alpha4 chain is responsible for high-affinity heparin binding. To specify the amino acid residues involved in this activity, we produced a series of alpha4 LG4-fusion proteins in which each of the 27 basic residues (arginine, R; histidine; lysine, K) were replaced one by one with alanine (A). When the effective residues R1520A, K1531A, K1533A, and K1539A are mapped on a structural model, they form a track on the concave surface of the beta-sandwich, suggesting that they interact with adjacent sulfate groups along the heparin chain. Whereas low-affinity heparin-binding sites of other LG domains have been located at the top of the beta-sheet sandwich opposite the N and C termini, the residues for high-affinity heparin binding of alpha4 LG4 reveal a new topological area of the LG module. 相似文献
9.
MUC17, a novel membrane-tethered mucin 总被引:13,自引:0,他引:13
Gum JR Crawley SC Hicks JW Szymkowski DE Kim YS 《Biochemical and biophysical research communications》2002,291(3):466-475
Membrane mucins have several functions in epithelial cells including cytoprotection, extravasation during metastases, maintenance of luminal structure, and signal transduction. In this paper we describe a large membrane mucin expressed in the normal intestine. This novel mucin, designated MUC17, contains an extended, repetitive extracellular glycosylation domain and a carboxyl terminus with two EGF-like domains, a SEA module domain, a transmembrane domain, and a cytoplasmic domain with potential serine and tyrosine phosphorylation sites. RNA blot analysis and in situ hybridization indicates that MUC17 is expressed in select pancreatic and colon cancer cell lines and in intestinal absorptive cells. Radiation hybrid mapping localized MUC17 to chromosome 7q22 where it resides in close proximity with three other membrane mucin genes, MUC3A, MUC3B, and MUC12. Thus, these membrane mucins reside together in a gene cluster, but are expressed in different tissues and are likely to have different functions as well. 相似文献
10.
《Current biology : CB》2020,30(8):1477-1490.e3
- Download : Download high-res image (221KB)
- Download : Download full-size image