首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   326篇
  免费   14篇
  国内免费   5篇
  345篇
  2024年   1篇
  2023年   2篇
  2022年   11篇
  2021年   6篇
  2020年   9篇
  2019年   18篇
  2018年   18篇
  2017年   5篇
  2016年   3篇
  2015年   14篇
  2014年   13篇
  2013年   35篇
  2012年   15篇
  2011年   14篇
  2010年   12篇
  2009年   13篇
  2008年   16篇
  2007年   12篇
  2006年   13篇
  2005年   14篇
  2004年   11篇
  2003年   5篇
  2002年   14篇
  2001年   6篇
  2000年   4篇
  1999年   3篇
  1998年   11篇
  1997年   4篇
  1996年   6篇
  1995年   5篇
  1994年   5篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   6篇
  1983年   1篇
  1982年   3篇
  1979年   1篇
  1977年   1篇
排序方式: 共有345条查询结果,搜索用时 16 毫秒
1.
2.
A purified extracellular endo β-1,3-xylanase (EC 3.2.1.32) from an isolated strain, Aspergillus terreus A-07, was found to hydrolyze 1,3-xylosyl linkages only. When rhodymenan (β-1,4 and β-1.3-linked xylan) was hydrolyzed by β-1,3-xylanase (EF-6), four β-1,4-linked xylooligosaccharide fractions were produced. The main product was β-1,4-xylotriose, with trace amounts of other β-1,4-linked xylooligosaccharides. Successive degradation by β-l,4-xylosidase of the β,4-xylooligosaccharides that were produced from hydrolysis of β-1,3-xylanase on rhodymenan yielded only xylose as the final product.

We compared the action pattern of this enzyme with that of an extracellular endo β-l,4-xylanase (EC 3.2.1.8) of Streptomyces. From a mixture of products of β-1,4-xylanase hydrolysis on rhodymenan, an isomeric xylotriose was isolated by charcoal chromatography after treating with β-1.4-xylosidase. The structure of this isomeric xylotriose was elucidated by methylation analysis and its susceptibility to β-1,4-xylanase, β-1,3-xylanase, and β-1,4-xylosidase. The obtained isomeric xylotriose was identified as 3-O-β-xylopyranosyl-4-O-β-D-xylopyranosyl-D-xylose (X1→3X1→4X). It has a melting point of 224~225°C and [α]D20(c = 1, H2O)= —46°.  相似文献   
3.
4.
    
Recently many authors have reported that cathepsin L can be found in the nucleus of mammalian cells with important functions in cell‐cycle progression. In previous research, we have demonstrated that a cysteine protease (SpH‐protease) participates in male chromatin remodeling and in cell‐cycle progression in sea urchins embryos. The gene that encodes this protease was cloned. It presents a high identity sequence with cathepsin L family. The active form associated to chromatin has a molecular weight of 60 kDa, which is higher than the active form of cathepsin L described until now, which range between 25 and 35 kDa. Another difference is that the zymogen present in sea urchin has a molecular weight of 75 and 90 kDa whereas for human procathepsin L has a molecular weight of 38–42 kDa. Based on these results and using a polyclonal antibody available in our laboratory that recognizes the active form of the 60 kDa nuclear cysteine protease of sea urchin, ortholog to human cathepsin L, we investigated the presence of this enzyme in HeLa and Caco‐2 cells. We have identified a new nuclear protease, type cathepsin L, with a molecular size of 60 kDa, whose cathepsin activity increases after a partial purification by FPLC and degrade in vitro histone H1. This protease associates to the mitotic spindle during mitosis, remains in the nuclei in binuclear cells and also translocates to the cytoplasm in non‐proliferative cells. J. Cell. Biochem. 111: 1099–1106, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
5.
The lysosomal cystein proteinase cathepsin B is shown to be secreted by ten human colon carcinoma cell lines and to accumulate in culture media as a latent enzyme. The cell lines also secrete a physiological inhibitor of cathepsin B, cystatin C. A significant correlation was found between secretion of the latent enzyme and the inhibitor (r = 0.755, P < 0.01). The aim of the present study was to modulate the respective secretion of the two antagonists to test whether or not latency of cathepsin B was due to the concomitant secretion of the inhibitor. SW480 colon carcinoma cells were treated with the acidotropic agent ammonium chloride, phorbol 12-myristate 13-acetate, and the inflammatory cytokines TGF-β, TNF-α, and IL-1β. Ammonium chloride significantly increased latent cathepsin B levels without affecting the constitutive secretion of cystatin C. Phorbol 12-myristate 13-acetate induced a 4- to 5-fold increase in secreted latent cathepsin B, but did not alter significantly the accumulation of cystatin C in media. The cytokines, TGF-β, TNF-α, and IL-1β, had no major effect on the expression of these two antagonists. Latent cathepsin B released from human carcinoma cells could be efficiently activated by neutrophil elastate at neutral pH. It is concluded that latent cathepsin B is a true proenzyme rather than an enzyme-inhibitor comples. In addition, our data from neutrophil elastate activation experiments indicate that a proteolytic system for activation of the tumor cell-secreted latent enzyme may exist in vivo.  相似文献   
6.
Biosynthesis of lysosomal endopeptidases   总被引:6,自引:0,他引:6  
Despite the clear differences between the amino acid sequence and enzymatic specificity of aspartic and cysteine endopeptidases, the biosynthetic processing of lysosomal members of these two families is very similar. With in vitro translation and pulse-chase analysis in tissue culture cells, the biosynthesis of cathepsin D, a aspartic protease, and cathepsins B, H and L, cysteine proteases, are compared. Both aspartic and cysteine endopeptidases undergo cotranslational cleavage of an amino-terminal signal peptide that mediates transport across the endoplasmic reticulum (ER) membrane. Addition of high-mannose carbohydrate also occurs cotranslationally in the lumen of the ER. Proteases of both enzyme classes are initially synthesized as inactive proenzymes possessing amino-terminal activation peptides. Removal of the propeptide generates an active single-chain enzyme. Whether the single-chain enzyme undergoes asymmetric cleavage into a light and a heavy chain appears to be cell type specific. Finally, late during their biosynthesis both classes of enzymes undergo amino acid trimming, losing a few amino acid residues at the cleavage site between the light and heavy chains and/or at their carboxyltermini. During biosynthesis these enzymes are also secreted to some extent. In most cells the secreted enzyme is the proenzyme bearing some complex carbohydrate. Under certain physiological conditions the inactive secreted enzymes may become activated as a result of a conformational change that may or may not result in autolysis. Analysis of the biochemical nature of the various processing steps helps define the cellular pathway followed by newly synthesized proteases targeted to the lysosome.  相似文献   
7.
    
Seven cDNA encoding silkworm fibroin homologues were cloned from a carp ovarian cDNA library. The encoded proteins are denoted as carp ovarian fibroin-like substances (FLS). FLS contain a repetitive domain consisting of tandem repeats of dipeptide of Gly-X, where X may be any amino acid. Each FLS has its own unique repeating sequence, such as GQGAGQGS, GQGMGQGM, GRGQGEGHGS, and GFGFGQGS, indicating a family of FLS genes exists in carp. FLS is exclusively expressed in oocytes and is stored in cortical granules. During cortical reaction, FLS is exocytosed to perivitelline space and then gradually added to the outer layer of the fertilization envelope (FEo). The FLS of fertilization envelope is conjugated with cystatin and cathepsin-like substance (CLS) and appears in multiple bands of molecular weights ranging from 40 to 205 kDa. After fertilization or artificial activation, carp eggs adhere firmly to the substratum via FEo. FLS is a major component of FEo. The presence of transglutaminase inhibitor, cadaverine or ethylene diaminetetraacetic acid, in the cortical reaction medium can impair or block the recruitment of FLS and other substances to FEo. As a consequence, FEo is not formed or is greatly reduced, resulting in a great reduction of egg adhesion.  相似文献   
8.
9.
    
Cathepsin L (CTSL) is a cysteine protease involved in a variety of physiological and pathological processes. Potent inhibitors against CTSL have long been sought for drug development. Due to insufficient specificity and suboptimal pharmacological properties for current CTSL inhibitors, novel agents are still required for selectively blocking CTSL activity. Here we generated a humanized antibody inhibitor of CTSL by genetically fusing the inhibitory propeptide of procathepsin L to the N‐terminus of the light chain of a humanized antibody. The resulting antibody fusion could be stably expressed and displays highly potent inhibition activity and specificity toward CTSL. This work demonstrates a new approach for the rapid generation of antibody inhibitors of CTSL. It can possibly be extended to create inhibitory antibodies targeting other cathepsin proteases, providing novel research and therapeutic tools.  相似文献   
10.
Digestion in Tenebrio molitor larvae occurs in the midgut, where there is a sharp pH gradient from 5.6 in the anterior midgut (AM) to 7.9 in the posterior midgut (PM). Accordingly, digestive enzymes are compartmentalized to the AM or PM. Enzymes in the AM are soluble and have acidic or neutral pH optima, while PM enzymes have alkaline pH optima. The main peptidases in the AM are cysteine endopeptidases presented by two to six subfractions of anionic proteins. The major activity belongs to cathepsin L, which has been purified and characterized. Serine post‐proline cleaving peptidase with pH optimum 5.3 was also found in the AM. Typical serine digestive endopeptidases, trypsin‐like and chymotrypsin‐like, are compartmentalized to the PM. Trypsin‐like activity is due to one cationic and three anionic proteinases. Chymotrypsin‐like activity consists of one cationic and four anionic proteinases, four with an extended binding site. The major cationic trypsin and chymotrypsin have been purified and thoroughly characterized. The predicted amino acid sequences are available for purified cathepsin L, trypsin and chymotrypsin. Additional sequences for putative digestive cathepsins L, trypsins and chymotrypsins are available, implying multigene families for these enzymes. Exopeptidases are found in the PM and are presented by a single membrane aminopeptidase N‐like peptidase and carboxypeptidase A, although multiple cDNAs for carboxypeptidase A were found in the AM, but not in the PM. The possibility of the use of two endopeptidases from the AM – cathepsin L and post‐proline cleaving peptidase – in the treatment of celiac disease is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号