首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1033篇
  免费   69篇
  国内免费   14篇
  2023年   11篇
  2022年   27篇
  2021年   59篇
  2020年   78篇
  2019年   76篇
  2018年   100篇
  2017年   35篇
  2016年   51篇
  2015年   80篇
  2014年   128篇
  2013年   82篇
  2012年   76篇
  2011年   106篇
  2010年   67篇
  2009年   28篇
  2008年   25篇
  2007年   15篇
  2006年   17篇
  2005年   7篇
  2004年   15篇
  2003年   5篇
  2002年   5篇
  2001年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1985年   3篇
  1984年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有1116条查询结果,搜索用时 15 毫秒
1.
Nucleus pulposus (NP) cells reside in a hypoxic environment in vivo, while the mechanisms of how NP cells maintain survival under hypoxia are not clear. Autophagy is an important physiological response to hypoxia and implicated in the survival regulation in most types of cells. This study was designed to investigate the role of autophagy in the survival of NP cells under hypoxia. We found that appropriate autophagy activity was beneficial to the survival of NP cells in serum deprivation, while excessive autophagy led to death of the NP cells. Hypoxia facilitated the survival of NP cells in serum deprivation by down-regulating excessive autophagy. Hypoxia down-regulated the autophagy activity of NP cells through restricting the production of reactive oxygen species (ROS) and inactivating the AMPK/mTOR signaling pathway, and possibly through a pathway involving HIF-1α. We believed that understanding the autophagy response of NP cells to hypoxia and its role in cell survival had important clinical significance in the prevention and treatment of degenerative discogenic diseases.  相似文献   
2.
In the fruitfly, Drosophila melanogaster, autophagy and caspase activity function in parallel in the salivary gland during metamorphosis and in a common regulatory hierarchy during oogenesis. Both autophagy and caspase activity progressively increase in the remodeling fat body, and they are induced by a pulse of the molting hormone (20-hydroxyecdysone, 20E) during the larval-prepupal transition. Inhibition of autophagy and/or caspase activity in the remodeling fat body results in 25–40% pupal lethality, depending on the genotypes. Interestingly, a balancing crosstalk occurs between autophagy and caspase activity in this tissue: the inhibition of autophagy induces caspase activity and the inhibition of caspases induces autophagy. The Drosophila remodeling fat body provides an in vivo model for understanding the molecular mechanism of the balancing crosstalk between autophagy and caspase activity, which oppose with each other and are induced by the common stimulus 20E, and blockage of either path reinforces the other path.  相似文献   
3.
In eukaryotes, the ubiquitin-proteasome system (UPS) and autophagy are two major intracellular protein degradation pathways. Several lines of evidence support the emerging concept of a coordinated and complementary relationship between these two processes, and a particularly interesting finding is that the inhibition of the proteasome induces autophagy. Yet, there is limited knowledge of the regulation of the UPS by autophagy. In this study, we show that the disruption of ATG5 and ATG32 genes in yeast cells under both nutrient-deficient conditions as well as stress that causes mitochondrial dysfunction leads to an activation of proteasome. The same scenario occurs after pharmacological inhibition of basal autophagy in cultured human cells. Our findings underline the view that the two processes are interconnected and tend to compensate, to some extent, for each other's functions.  相似文献   
4.
Summary A morphometric study was made of the ultrastructure of adipokinetic cells in resting adults of Locusta migratoria at 3, 23, and 43 days after imaginal ecdysis. The nucleus, rough endoplasmic reticulum, and Golgi apparatus enlarge with age, which indicates that the synthesis and packaging of secretory substances increases during ageing. The size of the storage compartment, consisting of secretory and ergastoplasmic granules, does not increase earlier than 23–43 days after imaginal ecdysis. The lysosomal compartment markedly enlarges between 3 and 23 days; later on, the growth of this compartment, especially of autophagosomes, is less prominent. This suggests that lysosomal destruction initially compensates for the production of new secretory granules, assuming that exocytosis of secretory granules by adipokinetic cells is insignificant in resting locusts. Afterwards, lysosomal destruction may no longer be sufficient to prevent over-production of secretory granules, as is suggested by the increase in the number of these granules between 23 and 43 days. This coincides with the appearance of a considerable number of large ergastoplasmic granules, which represent a spatially more efficient form of storage of secretory material than the much smaller secretory granules. The increase with age in the amount of secretory products indicates that the biosynthetic activity of the adipokinetic cells is not (finely) tuned to their releasing activity.  相似文献   
5.
Mechanistic target of rapamycin (mTOR), a highly conserved serine/threonine kinase, is involved in cellular metabolism, protein synthesis, and cell death. Programmed cell death (PCD) assists in eliminating aging, damaged, or neoplastic cells, and is indispensable for sustaining normal growth, fighting pathogenic microorganisms, and maintaining body homeostasis. mTOR has crucial functions in the intricate signaling pathway network of multiple forms of PCD. mTOR can inhibit autophagy, which is part of PCD regulation. Cell survival is affected by mTOR through autophagy to control reactive oxygen species production and the degradation of pertinent proteins. Additionally, mTOR can regulate PCD in an autophagy-independent manner by affecting the expression levels of related genes and phosphorylating proteins. Therefore, mTOR acts through both autophagy-dependent and -independent pathways to regulate PCD. It is conceivable that mTOR exerts bidirectional regulation of PCD, such as ferroptosis, according to the complexity of signaling pathway networks, but the underlying mechanisms have not been fully explained. This review summarizes the recent advances in understanding mTOR-mediated regulatory mechanisms in PCD. Rigorous investigations into PCD-related signaling pathways have provided prospective therapeutic targets that may be clinically beneficial for treating various diseases.  相似文献   
6.
Richard I. Odle 《Autophagy》2020,16(4):775-776
ABSTRACT

For the last two decades there has been wide ranging debate about the status of macroautophagy during mitosis. Because metazoan cells undergo an “open” mitosis in which the nuclear envelope breaks down, it has been proposed that macroautophagy must be inhibited to maintain genome integrity. While many studies have agreed that the number of autophagosomes is greatly reduced in cells undergoing mitosis, there has been no consensus on whether this reflects decreased autophagosome synthesis or increased autophagosome degradation. Reviewing the literature we were concerned that many studies relied too heavily on autophagy assays that were simply not appropriate for a relatively brief event such as mitosis. Using highly dynamic omegasome markers we have recently shown unequivocally that autophagosome synthesis is repressed at the onset of mitosis and is restored once cell division is complete. This is accomplished by CDK1, the master regulator of mitosis, taking over the function of MTORC1, to ensure autophagy is repressed during mitosis.  相似文献   
7.
Two new macrolide metabolites of the hygrolidin family, catenulisporidins A and B (1 and 2), together with a known compound hygrolidin (3), were isolated from the culture broth of the rare actinobacterium Catenulispora sp. KCB13F192. Their structures were elucidated on the basis of HRESIMS spectrometric and NMR spectroscopic analyses. Catenulisporidins A and B are the first example of natural hygrolidin and bafilomycin derivatives featuring a modified macrolide ring, and catenulisporidin A possesses a tetrahydrofuran ring through an ether linkage between C-7 and C-10. In cell-based fluorescent imaging and immunoblot assays, the three compounds were shown to inhibit autophagic flux in HeLa cells.  相似文献   
8.
9.
BACKGROUNDTo date, there has been no effective treatment for intervertebral disc degeneration (IDD). Nucleus pulposus-derived mesenchymal stem cells (NPMSCs) showed encouraging results in IDD treatment, but the overexpression of reactive oxygen species (ROS) impaired the endogenous repair abilities of NPMSCs. 6-gingerol (6-GIN) is an antioxidant and anti-inflammatory reagent that might protect NPMSCs from injury.AIMTo investigate the effect of 6-GIN on NPMSCs under oxidative conditions and the potential mechanism.METHODSThe cholecystokinin-8 assay was used to evaluate the cytotoxicity of hydrogen peroxide and the protective effects of 6-GIN. ROS levels were measured by 2´7´-dichlorofluorescin diacetate analysis. Matrix metalloproteinase (MMP) was detected by the tetraethylbenzimidazolylcarbocyanine iodide assay. TUNEL assay and Annexin V/PI double-staining were used to determine the apoptosis rate. Additionally, autophagy-related proteins (Beclin-1, LC-3, and p62), apoptosis-associated proteins (Bcl-2, Bax, and caspase-3), and PI3K/Akt signaling pathway-related proteins (PI3K and Akt) were evaluated by Western blot analysis. Autophagosomes were detected by transmission electron microscopy in NPMSCs. LC-3 was also detected by immunofluorescence. The mRNA expression of collagen II and aggrecan was evaluated by real-time polymerase chain reaction (RT-PCR), and the changes in collagen II and MMP-13 expression were verified through an immunofluorescence assay.RESULTS6-GIN exhibited protective effects against hydrogen peroxide-induced injury in NPMSCs, decreased hydrogen peroxide-induced intracellular ROS levels, and inhibited cell apoptosis. 6-GIN could increase Bcl-2 expression and decrease Bax and caspase-3 expression. The MMP, Annexin V-FITC/PI flow cytometry and TUNEL assay results further confirmed that 6-GIN treatment significantly inhibited NPMSC apoptosis induced by hydrogen peroxide. 6-GIN treatment promoted extracellular matrix (ECM) expression by reducing the oxidative stress injury-induced increase in MMP-13 expression. 6-GIN activated autophagy by increasing the expression of autophagy-related markers (Beclin-1 and LC-3) and decreasing the expression of p62. Autophagosomes were visualized by transmission electron microscopy. Pretreatment with 3-MA and BAF further confirmed that 6-GIN-mediated stimulation of autophagy did not reduce autophagosome turnover but increased autophagic flux. The PI3K/Akt pathway was also found to be activated by 6-GIN. 6-GIN inhibited NPMSC apoptosis and ECM degeneration, in which autophagy and the PI3K/Akt pathway were involved.CONCLUSION6-GIN efficiently decreases ROS levels, attenuates hydrogen peroxide-induced NPMSCs apoptosis, and protects the ECM from degeneration. 6-GIN is a promising candidate for treating IDD.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号