全文获取类型
收费全文 | 355篇 |
免费 | 25篇 |
国内免费 | 12篇 |
专业分类
392篇 |
出版年
2025年 | 2篇 |
2024年 | 9篇 |
2023年 | 3篇 |
2022年 | 6篇 |
2021年 | 8篇 |
2020年 | 3篇 |
2019年 | 10篇 |
2018年 | 13篇 |
2017年 | 8篇 |
2016年 | 8篇 |
2015年 | 9篇 |
2014年 | 7篇 |
2013年 | 34篇 |
2012年 | 20篇 |
2011年 | 11篇 |
2010年 | 7篇 |
2009年 | 11篇 |
2008年 | 10篇 |
2007年 | 11篇 |
2006年 | 7篇 |
2005年 | 14篇 |
2004年 | 10篇 |
2003年 | 15篇 |
2002年 | 11篇 |
2001年 | 12篇 |
2000年 | 7篇 |
1999年 | 9篇 |
1998年 | 5篇 |
1997年 | 13篇 |
1996年 | 5篇 |
1995年 | 5篇 |
1994年 | 11篇 |
1993年 | 8篇 |
1992年 | 10篇 |
1991年 | 7篇 |
1990年 | 15篇 |
1989年 | 8篇 |
1988年 | 6篇 |
1987年 | 2篇 |
1986年 | 1篇 |
1985年 | 4篇 |
1984年 | 3篇 |
1983年 | 2篇 |
1982年 | 4篇 |
1981年 | 2篇 |
1978年 | 1篇 |
1977年 | 1篇 |
1976年 | 3篇 |
1973年 | 1篇 |
排序方式: 共有392条查询结果,搜索用时 15 毫秒
381.
The sorghum head bug, Calocoris angustatus Lethiery (Hemiptera: Miridae), is one of the most important pests of grain sorghum in India. Studies were conducted to quantify the effect of head bug damage on grain quality and seedling establishment on head bug-resistant cultivars (IS 17610 and IS 21443), a moderately susceptible cultivar (IS 9692), and a susceptible commercial cultivar (CSH 11). Differences in 1000-grain mass, seed germination and percentage of floaters were significant between protected and unprotected plots in CSH 11 and IS 9692, but not in IS 17610 and IS 21443. Grain damage ratings were significantly lower in IS 17610 than in IS 9692 and CSH 11 across different protection levels. Head bug-damaged grain had greater protein content than the undamaged grain, possibly because of depletion in starch, and a marginal increase in soluble sugars. Amounts of proline and tyrosine were greater in the bug-damaged grain than in the undamaged grain, while the reverse was true for aspartic acid, methionine, leucine and lysine. Head bug damage also increased the tannin content in IS 9692 (which is a high-tannin genotype). Moisture regimes and insecticide protection levels significantly affected seedling emergence. Seedling emergence of CSH 11 was lower than that in IS 17610. In the latter genotype, the differences between protected and unprotected plots were not significant. Head bug damage thus not only leads to quantitative loss in grain yield, but also spoils the grain quality and renders the grain unfit for seed purposes. These qualitative effects should be taken into account while estimating losses due to bug damage and determining economic thresholds. 相似文献
382.
383.
《生物技术通报》2025,41(1)
【目的】CPP基因家族在真核生物中广泛存在;对植物的生长发育起到重要的作用。从高粱基因组中鉴定CPP基因家族成员并分析其表达特征;为高粱CPP基因家族功能研究及遗传改良提供理论依据。【方法】通过生物信息学技术的方法对高粱CPP基因家族进行序列分析;并联合转录组和RT-qPCR技术分析SbCPP在高粱不同组织及盐碱胁迫下的表达情况。【结果】高粱中共鉴定到8个SbCPP基因;不均匀地分布在7条染色体上;家族各成员间具有相似的基因结构及蛋白理化性质;结合进化树分析与共线性分析结果表明;SbCPP基因与水稻存在密切亲缘关系;且共存在6对同源基因;启动子分析发现;SbCPP基因启动子含有光响应、激素响应、应激响应等元件。转录组数据分析结果表明;SbCPP基因可能参与高粱响应盐碱胁迫的调控过程。通过实时荧光定量PCR发现;SbCPP基因在高粱盐碱胁迫中广泛表达;但家族成员在不同时期中的表达模式存在差异;SbCPP01、SbCPP04在12 h表达较高;SbCPP02在6 h表达较高;SbCPP03在1 h表达量较高;上述基因表达显著。【结论】在高粱中获得了8个CPP基因;其中SbCPP01、SbCPP02、SbCPP04基因在盐碱胁迫处理下呈现高表达;表明这些基因在高粱抵御盐碱胁迫中发挥重要作用。 相似文献
384.
高粱是一种重要的粮食、能源、饲料和工业原料作物,具有广泛的生长适应性和多样的利用价值。在过去的几十年,传统育种方法在高粱育种中虽然取得了一定的成果,但如今仍然面临着一系列挑战,如育种周期长、育种效率低以及遗传背景复杂等。随着分子生物学、遗传学和生物信息学等技术的快速发展,分子育种技术开辟了提高高粱产量与品质的新途径。本文综述了包括高粱农艺性状和适应性性状等重要性状方面的分子基础研究进展,包括籽粒产量、籽粒品质、开花期和株高、分蘖特性、胁迫抗逆特性和雄性不育特性等,并对未来的重点研究方向进行了讨论,为高粱育种提供了新的思路和方法。 相似文献
385.
高粱蚜(Melanaphis sacchari)和丝轴黑粉菌(Sporisorium reilianum)侵染高粱,导致其生长发育受阻、产量和品质下降。采用生物信息学分析和分子生物学方法,研究高粱发育过程及病虫发生下的MYC基因表达模式变化与自然等位DNA变异,为选育抗逆、高产和优质高粱品种提供参考。结果表明,高粱基因组含28个MYC基因,不均匀分布在10条染色体上,基本螺旋-环-螺旋_MYC_N (basic helix-loop-helix_MYC_N, bHLH_MYC_N)与螺旋-环-螺旋(helix-loop-helix, HLH)结构域是高粱MYC基因的保守结构域。基因表达分析显示,SbbHLH35.7g在叶片中表达水平最高;SbAbaIn在早期籽粒中表达强;SbMYC2.1g在成熟花粉中表达水平高。在抗、感蚜品系5叶期叶片中,显著诱导表达的是SbAbaIn、SbLHW.4g和SbLHW.2g。SbbHLH35.7g在穗组织表达水平最高,且受丝轴黑粉菌侵染显著诱导表达。SbMYCs启动子区包含脱落酸、水杨酸、茉莉酸甲酯和干旱诱导等相关元件,使其更好地响应逆境胁迫。通过分析全基因组重测序数据,鉴定到SbMYCs关键的单核苷酸多态性(single nucleotide polymorphism, SNP)或插入缺失标记(insertion-deletion, INDEL)变异。SbAbaIn与TIFY结构域蛋白等互作,SbbHLH35.7g与多药剂外泵蛋白(multidrug efflux transporter, MDR)和核转运蛋白(imporin)等互作。高粱蚜和丝轴黑粉菌侵染分别诱导SbAbaIn和SbbHLH35.7g表达,SbAbaIn通过茉莉酸(jasmonic acid, JA)途径诱导相关基因表达,增强抗虫性;SbbHLH35.7g可能通过解毒途径提高抗病性。 相似文献
386.
对从饲料玉米、高粱、麦秆及棉花中筛选出的乳酸菌进行分类鉴定和综合性分析。用MRS+CaCO3固体培养基从棉花中分离出乳酸菌18株、高粱中30株、饲料玉米中18株、麦秆中18株。经形态学、生理生化试验进行初步鉴定并按产酸试验,耐盐及耐酸试验挑选出32株产酸率强的乳酸菌对其进行16S rDNA分子鉴定。结果显示,32株菌都具有良好的耐盐、耐酸能力;经生理生化和16S rDNA基因序列鉴定可知32株乳酸菌分属于两个属,即乳杆菌属、肠球菌属,4个种,即干酪乳杆菌(Lactobacilluscasei)、肠道球菌(Entercoccus faecium)、植物乳杆菌(Lactobacillus plantarum)、海氏肠球菌(Entercoccus hirae)。4种饲料原料中肠道球菌普遍存在。除了这种乳酸菌以外,棉花有干酪乳杆菌、植物乳杆菌、海氏肠球菌,玉米和麦秆内有植物乳杆菌。从饲料中筛选出4株具有较强产酸能力的乳酸菌,可进一步研发成青贮饲料添加剂。 相似文献
387.
气候条件和栽培管理技术直接影响着高梁的干物质积累状况和最终产量。在栽培技术基本相同条件下,干物质的积累主要受气候条件所制约。因此,通过分析不同产量年型下气候 相似文献
388.
389.
The effects of four different pretreatments on enzymatic hydrolysis of sweet sorghum bagasse 总被引:2,自引:0,他引:2
Four pretreatment processes including ionic liquids, steam explosion, lime, and dilute acid were used for enzymatic hydrolysis of sweet sorghum bagasse. Compared with the other three pretreatment approaches, steam-explosion pretreatment showed the greatest improvement on enzymatic hydrolysis of the bagasse. The maximum conversion of cellulose and the concentration of glucose obtained from enzymatic hydrolysis of steam explosion bagasse reached 70% and 25 g/L, respectively, which were both 2.5 times higher than those of the control (27% and 11 g/L). The results based on the analysis of SEM photos, FTIR, XRD and NMR detection suggested that both the reduction of crystallite size of cellulose and cellulose degradation from the Iα and Iβ to the Fibril surface cellulose and amorphous cellulose were critical for enzymatic hydrolysis. These pretreatments disrupted the crystal structure of cellulose and increased the available surface area, which made the cellulose better accessible for enzymatic hydrolysis. 相似文献
390.
High solid fed‐batch butanol fermentation with simultaneous product recovery: Part II—process integration
下载免费PDF全文

In these studies, liquid hot water (LHW) pretreated and enzymatically hydrolyzed Sweet Sorghum Bagasse (SSB) hydrolyzates were fermented in a fed‐batch reactor. As reported in the preceding paper, the culture was not able to ferment the hydrolyzate I in a batch process due to presence of high level of toxic chemicals, in particular acetic acid released from SSB during the hydrolytic process. To be able to ferment the hydrolyzate I obtained from 250 g L?1 SSB hydrolysis, a fed‐batch reactor with in situ butanol recovery was devised. The process was started with the hydrolyzate II and when good cell growth and vigorous fermentation were observed, the hydrolyzate I was slowly fed to the reactor. In this manner the culture was able to ferment all the sugars present in both the hydrolyzates to acetone butanol ethanol (ABE). In a control batch reactor in which ABE was produced from glucose, ABE productivity and yield of 0.42 g L?1 h?1 and 0.36 were obtained, respectively. In the fed‐batch reactor fed with SSB hydrolyzates, these productivity and yield values were 0.44 g L?1 h?1 and 0.45, respectively. ABE yield in the integrated system was high due to utilization of acetic acid to convert to ABE. In summary we were able to utilize both the hydrolyzates obtained from LHW pretreated and enzymatically hydrolyzed SSB (250 g L?1) and convert them to ABE. Complete fermentation was possible due to simultaneous recovery of ABE by vacuum. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:967–972, 2018 相似文献