首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3422篇
  免费   365篇
  国内免费   151篇
  2024年   11篇
  2023年   72篇
  2022年   75篇
  2021年   100篇
  2020年   195篇
  2019年   177篇
  2018年   139篇
  2017年   144篇
  2016年   165篇
  2015年   154篇
  2014年   175篇
  2013年   283篇
  2012年   137篇
  2011年   186篇
  2010年   71篇
  2009年   179篇
  2008年   142篇
  2007年   145篇
  2006年   135篇
  2005年   111篇
  2004年   86篇
  2003年   94篇
  2002年   60篇
  2001年   60篇
  2000年   54篇
  1999年   64篇
  1998年   76篇
  1997年   53篇
  1996年   51篇
  1995年   87篇
  1994年   55篇
  1993年   40篇
  1992年   44篇
  1991年   32篇
  1990年   37篇
  1989年   33篇
  1988年   37篇
  1987年   16篇
  1986年   19篇
  1985年   38篇
  1984年   24篇
  1983年   8篇
  1982年   19篇
  1981年   15篇
  1980年   5篇
  1979年   9篇
  1978年   7篇
  1977年   7篇
  1976年   4篇
  1975年   4篇
排序方式: 共有3938条查询结果,搜索用时 156 毫秒
61.
The present investigation examined the relationship between CO2 sensitivity [at rest (S R) and during exercise (S E)] and the ventilatory response to exercise in ten elderly (61–79 years) and ten younger (17–26 years) subjects. The gradient of the relationship between minute ventilation and CO2 production ( E/ CO2) of the elderly subjects was greater than that of the younger subjects [mean (SEM); 32.8 (1.6) vs 27.3 (0.4); P<0.01]. At rest, S R was lower for the elderly than for the younger group [10.77 (1.72) vs 16.95 (2.13) 1 · min–1 · kPa–1; 1.44 (0.23) vs 2.26 (0.28) 1 · min–1 · mmHg–1; P<0.05], but S E was not significantly different between the two groups [17.85 (2.49) vs 19.17 (1.62) l · min–1 · kPa–1; 2.38 (0.33) vs 2.56 (0.21) 1 · min–1 · mmHg–1]. There were significant correlations between both S R and S E, and E/ CO2 (P<0.05; P<0.001) for the younger group, bot none for the elderly. The absence of a correlation for the elderly supports the suggestion that E/ CO2 is not an appropriate index of the ventilatory response to exercise for elderly humans.  相似文献   
62.
The increasing prevalence of antibiotic resistant bacteria is a significant healthcare crisis with substantial socioeconomic impact on global community. The development of new antibiotics is both costly and time-consuming prompting the exploration of alternative solutions such as nanotechnology which represents opportunities for targeted drug delivery and reduced MIC. However, concerns have arisen regarding genotoxic effects of nanoparticles on human health necessitating an evaluation of nanoparticle induced DNA damage.This study aimed to investigate the antibacterial potential of already prepared, characterized chitosan nanoparticles loaded with carvacrol and their potential synergism with Topoisomerase II inhibitors against S. aureus, E. coli and S. typhi using agar well diffusion, microdilution and checkerboard method. Genotoxicity was assessed through comet assay.Results showed that both alone and drug combinations of varying concentrations exhibited greater zones of inhibition at higher concentrations. Carvacrol nanoparticles combined with ciprofloxacin and doxorubicin significantly reduced MIC compared to the drugs used alone. The MIC50 values for ciprofloxacin were 35.8 µg/ml, 48.74 µg/ml, 35.57 µg/ml while doxorubicin showed MIC50 values of 20.79 µg/ml, 34.35 µg/ml, 25.32 µg/ml against S. aureus, E. coli and S. typhi respectively. The FICI of ciprofloxacin and doxorubicin with carvacrol nanoparticles found ≤ 0.5 Such as 0.44, 0.44,0.48 for ciprofloxacin and 0.45, 0.45, 0.46 for doxorubicin against S. aureus, E. coli and S. typhi respectively revealed the synergistic effect. The analysis of comet assay output images showed alteration of DNA at high concentrations.Our results suggested that carvacrol nanoparticles in combination with Topoisomerase inhibitors may prevent and control the emergence of resistant bacteria with reduced dose.  相似文献   
63.
Rogers  H. H.  Dahlman  R. C. 《Plant Ecology》1993,104(1):117-131
Carbon dioxide is rising in the global atmosphere, and this increase can be expected to continue into the foreseeable future. This compound is an essential input to plant life. Crop function is affected across all scales from biochemical to agro-ecosystem. An array of methods (leaf cuvettes, field chambers, free-air release systems) are available for experimental studies of CO2 effects. Carbon dioxide enrichment of the air in which crops grow usually stimulates their growth and yield. Plant structure and physiology are markedly altered. Interactions between CO2 and environmental factors that influence plants are known to occur. Implications for crop growth and yield are enormous. Strategies designed to assure future global food security must include a consideration of crop responses to elevated atmospheric CO2. Future research should include these targets: search for new insights, development of new techniques, construction of better simulation models, investigation of belowground processes, study of interactions, and the elimination of major discrepancies in the scientific knowledge base.  相似文献   
64.
Spray-induced gene silencing (SIGS) is an innovative and eco-friendly technology where topical application of pathogen gene-targeting RNAs to plant material can enable disease control. SIGS applications remain limited because of the instability of RNA, which can be rapidly degraded when exposed to various environmental conditions. Inspired by the natural mechanism of cross-kingdom RNAi through extracellular vesicle trafficking, we describe herein the use of artificial nanovesicles (AVs) for RNA encapsulation and control against the fungal pathogen, Botrytis cinerea. AVs were synthesized using three different cationic lipid formulations, DOTAP + PEG, DOTAP and DODMA, and examined for their ability to protect and deliver double stranded RNA (dsRNA). All three formulations enabled dsRNA delivery and uptake by B. cinerea. Further, encapsulating dsRNA in AVs provided strong protection from nuclease degradation and from removal by leaf washing. This improved stability led to prolonged RNAi-mediated protection against B. cinerea both on pre- and post-harvest plant material using AVs. Specifically, the AVs extended the protection duration conferred by dsRNA to 10 days on tomato and grape fruits and to 21 days on grape leaves. The results of this work demonstrate how AVs can be used as a new nanocarrier to overcome RNA instability in SIGS for crop protection.  相似文献   
65.
In recent years, drug manufacturers and researchers have begun to consider the nanobiotechnology approach to improve the drug delivery system for tumour and cancer diseases. In this article, we review current strategies to improve tumour and cancer drug delivery, which mainly focuses on sustaining biocompatibility, biodistribution, and active targeting. The conventional therapy using cornerstone drugs such as fludarabine, cisplatin etoposide, and paclitaxel has its own challenges especially not being able to discriminate between tumour versus normal cells which eventually led to toxicity and side effects in the patients. In contrast to the conventional approach, nanoparticle-based drug delivery provides target-specific delivery and controlled release of the drug, which provides a better therapeutic window for treatment options by focusing on the eradication of diseased cells via active targeting and sparing normal cells via passive targeting. Additionally, treatment of tumours associated with the brain is hampered by the impermeability of the blood–brain barriers to the drugs, which eventually led to poor survival in the patients. Nanoparticle-based therapy offers superior delivery of drugs to the target by breaching the blood–brain barriers. Herein, we provide an overview of the properties of nanoparticles that are crucial for nanotechnology applications. We address the potential future applications of nanobiotechnology targeting specific or desired areas. In particular, the use of nanomaterials, biostructures, and drug delivery methods for the targeted treatment of tumours and cancer are explored.  相似文献   
66.
Liver fibrosis is one of the major liver complications which eventually progresses to liver cirrhosis and liver failure. Cerium oxide nanoparticles, also known as nanoceria (NC) are nanoparticles with potential antioxidant and anti-inflammatory activities. Herein, we evaluated the hepatoprotective and anti-fibrotic effects of nanoceria (NC) against bile duct ligation (BDL) induced liver injury. NC were administered i.p. for 12 days (0.5 and 2 mg/kg) to C57BL/6J mice. The biochemical markers of liver injury, oxidative and nitrosative stress markers, inflammatory cytokines were evaluated. Fibrosis assessment and mechanistic studies were conducted to assess the hepatoprotective effects of NC. Administration of NC proved to significantly ameliorate liver injury as evident by reduction in SGOT, SGPT, ALP and bilirubin levels in the treated animals. NC treatment significantly reduced the hydroxyproline levels and expression of fibrotic markers. In summary, our findings establish the hepatoprotective and anti-fibrotic effects of NC against BDL induced liver injury and liver fibrosis. These protective effects were majorly ascribed to their potential ROS inhibition and antioxidant activities through catalase, superoxide dismutase (SOD)-mimetic properties and auto-regenerating capabilities.  相似文献   
67.
The extensive use of nanoparticles (NPs) in diverse applications causes their localization to aquatic habitats, affecting the metabolic products of primary producers in aquatic ecosystems, such as algae. Synthesized calcium oxide nanoparticles (CaO NPs) are of the scarcely studied NPs. Thus, the current work proposed that the exposure to CaO NPs may instigate metabolic pathway to be higher than that of normally growing algae, and positively stimulate algal biomass. In this respect, this research was undertaken to study the exposure effect of CaO NPs (0, 20, 40, 60, 80, and 100 µg mL−1 ) on the growth, photosynthesis, respiration, oxidative stress, antioxidants, and lipid production of the microalga Coccomyxa chodatii SAG 216-2. The results showed that the algal growth concomitant with chlorophyll content, photosynthesis, and calcium content increased in response to CaO NPs. The contents of biomolecules such as proteins, amino acids, and carbohydrates were also promoted by CaO NPs with variant degrees. Furthermore, lipid production was enhanced by the applied nanoparticles. CaO NPs induced the accumulation of hydrogen peroxide, while lipid peroxidation was reduced, revealing no oxidative behavior of the applied nanoparticles on alga. Also, CaO NPs have a triggering effect on the antioxidant enzymes such as superoxide dismutase, catalase, ascorbate peroxidase, and guaiacol peroxidase. The results recommended the importance of the level of 60 µg mL−1 CaO NPs on lipid production (with increasing percentage of 65% compared to control) and the highest dry matter acquisition of C. chodatii. This study recommended the feasibility of an integrated treatment strategy of CaO NPs in augmenting biomass, metabolic up-regulations, and lipid accumulation in C. chodatii.  相似文献   
68.
The current study was designed to evaluate the antioxidant, anticancer and antimicrobial activities of silver nanoparticles (AgNPs) biosynthesized by Spirulina platensis extract. The biosynthesized silver nanoparticles were characterized using Fourier transform infrared (FT-IR) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis. The antioxidant activity of the biosynthesized AgNPs were determined via DPPH radical scavenging assay while its anticancer activity was determined using the MTT assay. The antimicrobial activity of the biosynthesized AgNPs were analyzed by disc diffusion method. Spirulina platensis acts as a reducing and capping agent. The efficacy of silver nanoparticles (AgNPs) in inhibiting the growth of Gram-negative bacteria, specifically Acetobacter, Klebsiella, Proteus vulgaris, and Pseudomonas aeruginosa, was assessed by the utilisation of the diffusion method. The study aimed to evaluate the efficacy of biosynthesized silver nanoparticles (AgNPs) against many strains of Pseudomonas aeruginosa bacteria. The findings of the study revealed that when administered in doses of 50 μl, 75 μl, and 100 μl, the largest observed zone of inhibition corresponded to measurements of 10.5 mm, 14 mm, and 16 mm, respectively. A zone of inhibition with dimensions of 8 mm, 10.5 mm, and 12 mm was detected during testing against Acetobacter at concentrations of 50 μl, 75 μl, and 100 μl, respectively. The findings also indicate that there is a positive correlation between the concentration of AgNP and the DPPH scavenging ability of silver nanoparticles. The percentage of inhibition observed at concentrations of 500 μg/ml, 400 μg/ml, 300 μg/ml, 200 μg/ml, and 100 μg/ml were recorded as 80±1.98, 61±1.98, 52±1.5, 42±1.99, and 36±1.97, respectively. In addition, it was observed that the silver nanoparticles exhibited the greatest antioxidant activity at a concentration of 500 g/ml, with a measured value of 80.89±1.99. The IC-50 values, representing the inhibitory concentration required to achieve 50 % inhibition, were found to be 8.16, 19.15, 30.14, 41.13, and 63.11 at inhibition levels of 36±1.97, 42±1.99, 52±1.5, 61±1.98, and 80±1.98, respectively.  相似文献   
69.
The short-term stimulation of the net rate of carbon dioxide exchange of leaves by elevated concentrations of CO2 usually observed in C3 plants sometimes does not persist. Experiments were conducted to test whether the patterns of response to the environment during growth were consistent with the hypotheses that photosynthetic adjustment to elevated CO2 concentration is due to (1) feedback inhibition or (2) nutrient stress. Soybean [Glycine max (L.) Merr. cv. Williams] and sugar beet (Best vulgaris L. cv. Mono Hye-4) were grown from seed at 350 and 700 μl? CO2, at 20 and 25°C, at a photon flux density of 0.5 and 1.0 mmol m?2 S?1 and with three nutrient regimes until the third trifoliolate leaf of soybean or the sixth leaf of sugar beet had finished expanding. Net rates of CO2 exchange of the most recently expanded leaves were then measured at both 350 and 700 μl 1?1 CO2. Plants grown at the elevated CO2 concentration had net rates of leaf CO2 exchange which were reduced by 33% in sugar beet and 23% in soybean when measured at 350 μl 1?1 CO2 and when averaged over all treatments. Negative photosynthetic adjustment to elevated CO2 concentration was not greater at 20 than at 25°C, was not greater at a photon flux density of 1.0 than at 0.5 mmol m?2 S?1 and was not greater with limiting nutrients. Furthermore, in soybean, negative photosynthetic adjustment could be induced by a single night at elevated CO2 concentration, with net rates of CO2 exchange the next day equal to those of leaves of plants grown from seed at the elevated concentration of CO2. These patterns do not support either the feedback-inhibition or the nutrient-stress hypothesis of photosynthetic adjustment to elevated concentrations of CO2.  相似文献   
70.
Elevated atmospheric carbon dioxide (Ca) usually reduces stomatal conductance, but the effects on plant transpiration in the field are not well understood. Using constant‐power sap flow gauges, we measured transpiration from Quercus myrtifolia Willd., the dominant species of the Florida scrub‐oak ecosystem, which had been exposed in situ to elevated Ca (350 µmol mol ? 1 above ambient) in open‐top chambers since May 1996. Elevated Ca reduced average transpiration per unit leaf area by 37%, 48% and 49% in March, May and October 2000, respectively. Temporarily reversing the Ca treatments showed that at least part of the reduction in transpiration was an immediate, reversible response to elevated Ca. However, there was also an apparent indirect effect of Ca on transpiration: when transpiration in all plants was measured under common Ca, transpiration in elevated Ca‐grown plants was lower than that in plants grown in normal ambient Ca. Results from measurements of stomatal conductance (gs), leaf area index (LAI), canopy light interception and correlation between light and gs indicated that the direct, reversible Ca effect on transpiration was due to changes in gs caused by Ca, and the indirect effect was caused mainly by greater self‐shading resulting from enhanced LAI, not from stomatal acclimation. By reducing light penetration through the canopy, the enhanced self‐shading at elevated Ca decreased stomatal conductance and transpiration of leaves at the middle and bottom of canopy. This self‐shading mechanism is likely to be important in ecosystems where LAI increases in response to elevated Ca.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号