首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3422篇
  免费   365篇
  国内免费   151篇
  2024年   11篇
  2023年   72篇
  2022年   75篇
  2021年   100篇
  2020年   195篇
  2019年   177篇
  2018年   139篇
  2017年   144篇
  2016年   165篇
  2015年   154篇
  2014年   175篇
  2013年   283篇
  2012年   137篇
  2011年   186篇
  2010年   71篇
  2009年   179篇
  2008年   142篇
  2007年   145篇
  2006年   135篇
  2005年   111篇
  2004年   86篇
  2003年   94篇
  2002年   60篇
  2001年   60篇
  2000年   54篇
  1999年   64篇
  1998年   76篇
  1997年   53篇
  1996年   51篇
  1995年   87篇
  1994年   55篇
  1993年   40篇
  1992年   44篇
  1991年   32篇
  1990年   37篇
  1989年   33篇
  1988年   37篇
  1987年   16篇
  1986年   19篇
  1985年   38篇
  1984年   24篇
  1983年   8篇
  1982年   19篇
  1981年   15篇
  1980年   5篇
  1979年   9篇
  1978年   7篇
  1977年   7篇
  1976年   4篇
  1975年   4篇
排序方式: 共有3938条查询结果,搜索用时 31 毫秒
41.
Monoterpene glycoside biosynthesis in detached grape berries grown in vitro   总被引:2,自引:0,他引:2  
A procedure for the culture in vitro of isolated small berries of Vitis vinifera L. cv. Muscat of Alexandria in a Murashige and Skoog basal medium supplemented with N6-benzyladenine and indoleacetic acid is described. Berries developed well in culture during 60 days and tripled in size, but remained green and smaller than normal berries grown in vivo. Some callus formed on the distal end of the berry, and where major skin damage occurred, callus emerged from the cracked berries. In order to examine their biosynthetic competency, berries which were previously cultured in vitro for 60 days were incubated for 48 h in a Murashige and Skoog medium containing a [14C]-labelled water-soluble fraction. This fraction was isolated from grape berries located adjacent to a leaf that had been exposed to gaseous 14CO2 in full sunlight for 5 h. The berries were then recultured for 48 h after which a glycosidic fraction was isolated on a C18 reversed phase column and further separated by thin layer chromatography (TLC). The major labelled band corresponded to the geranyl-β-rutinoside marker, indicating that grape berries have the ability to synthesize monoterpene glycosides. This band also consisted of other monoterpene glycosides as revealed by the gas chromatography-mass spectrometry (GC-MS) analysis of their aglycones (released by enzymatic hydrolysis).  相似文献   
42.
A simple non-invasive method for the characterization of growth of a plant cell suspension in a single culture flask is given. The dissimilation of sugars by a cell-culture causes a loss of weight of the contents of the culture flask, and can therefore be used to follow the growth in that single culture flask. Because a correction for water evaporation is necessary, accurate results can only be obtained when a stable closure is used (e.g. Silicosen T-type plugs). The dissimilation curves obtained in this way were correlated to the concentration of sugars in the medium, the dry weight and the fresh weight. From these correlations the amount of intracellularly stored carbohydrates could be estimated. Rate constants for CO2-diffusion were determined for different types of closure. These values allowed the estimation of CO2 levels inside the culture flasks from the dissimilation curves (CO2 release curves). The dissimilation curves obtained using this method can easily be related to other types of growth curves. Different growth-phases can be clearly distinguished, e.g. lag-phase, exponential growth-phase and stationary-phase.  相似文献   
43.
随着化石燃料消耗量不断增加,由此产生的主要大气污染物之一SO_2的浓度和影响范围也日趋增大。SO_2对植物,特别是对农作物的影响已受到普遍重视。本研究选择我国北方种植面积大、分布广的大豆为供试作物,在野外开顶式熏气装置中进行低浓度SO_2长期暴露试验,观察SO_2对大豆生长发育及产量的影响,以期为制订农田大气环境质量标准提供有一定参考价值的生态学基准。  相似文献   
44.
We studied the effects of atmospheric CO2 enrichment (280, 420 and 560 l CO2 l–1) and increased N deposition (0,30 and 90 kg ha–1 year–1) on the spruce-forest understory species Oxalis acetosella, Homogyne alpina and Rubus hirtus. Clones of these species formed the ground cover in nine 0.7 m2 model ecosystems with 5-year-old Picea abies trees (leaf area index of approx 2.2). Communities grew on natural forest soil in a simulated montane climate. Independently of N deposition, the rate of light-saturated net photosynthesis of leaves grown and measured at 420 l CO2 l–1 was higher in Oxalis and in Homogyne, but was not significantly different in Rubus compared to leaves grown and measured at the pre-industrial CO2 concentration of 280 l l–1. Remarkably, further CO2 enrichment to 560 l l–1 caused no additional increase of CO2 uptake. With increasing CO2 supply concentrations of non-structural carbohydrates in leaves increased and N concentrations decreased in all species, whereas N deposition had no significant effect on these traits. Above-ground biomass and leaf area production were not significantly affected by elevated CO2 in the more vigorously growing species O. acetosella and R. hirtus, but the slow growing H. alpina produced almost twice as much biomass and 50% more leaf area per plant under 420 l CO2 l–1 compared to 280 l l–1 (again no further stimulation at 560 l l–1). In contrast, increased N addition stimulated growth in Oxalis and Rubus but had no effect on Homogyne. In Oxalis (only) biomass per plant was positively correlated with microhabitat quantum flux density at low CO2, but not at high CO2 indicating carbon saturation. On the other hand, the less shade-tolerant Homogyne profited from CO2 enrichment at all understory light levels facilitating its spread into more shady micro-habitats under elevated CO2. These species-specific responses to CO2 and N deposition will affect community structure. The non-linear responses to elevated CO2 of several of the traits studied here suggest that the largest responses to rising atmospheric CO2 are under way now or have already occurred and possible future responses to further increases in CO2 concentration are likely to be much smaller in these understory species.  相似文献   
45.
The fluxes of NO and NO2 between wheat canopy monoliths and the atmosphere were investigated with the dynamic chamber technique. For this purpose monoliths were dug out at different plant growth stages from a field site, transported to the institute, and placed in an environmental growth chamber. The wheat canopy monoliths were exposed over a period of four days to the average ratios of atmospheric NO2 and NO measured at the field site, i.e. NO2 concentration of about 18 mL L-1 plus NO concentration lower than 0.5 nL L-1. Under these conditions NO emission into the atmosphere and NO2 deposition into canopy monoliths was observed. Both fluxes showed diurnal variation with maximum rates during the light and minimum rates during darkness. NO2 fluxes correlated with soil temperature as well as with light intensity. NO fluxes correlated with soil temperature but not with light intensity. From the investigation performed the diurnal variation of the NO and NO2 compensation points, the maximum rates of NO and NO2 emission, and the total resistances of NO and NO2 fluxes were calculated. Under the assumption that the measured data are representative for the whole vegetation period, annual fluxes of NO and NO2 were estimated. Annual NO emission into the atmosphere amounted to 87 mg N m-2 y-1 (0.87 kg ha-1 y-1), annual NO2 deposition into canopy monoliths amounted to 1273 mg N m-2 y-1 (12.73 kg ha-1 y-1). Apparently, the uptake of atmospheric nitrogen by the wheat field from NO2 deposition is about 15 times higher than the loss of nitrogen from NO emission. It can therefore be assumed that even in rural areas wheat fields are a considerable sink for atmospheric nitrogen. The annual sink strength estimated in the present study is ca. 12 kg N ha-1 y-1. The possible origin of the NO emitted and the fate of atmospheric NO2 taken up by the wheat canopy monoliths are discussed.Preliminary results of this paper were presented at the Joint Workshop COST 611/Working Party 3 and EUROTRAC in Delft, The Netherlands (Ludwig et al., 1991).  相似文献   
46.
Spinach plants (Spinacea oleracea L. cv. Estivato) were grown on nutrient solutions under deficient, normal and excess sulfate supply. In both young and mature plants net uptake of sulfate and its transport to the shoot increased with increasing sulfate supply, but both processes proceeded at a higher rate in young as compared to mature plants. The relative sulfate transport, i.e. the relative amount of the sulfate taken up that is transported to the shoot, decreased with increasing sulfate supply. Apparently, net uptake of sulfate is not strictly controlled by the sulfur demand of the shoot, but xylem loading appears to counteract excess transport of sulfate to the shoot. Fumigation with H2S or SO2 reduced net uptake of sulfate by the roots in sulfur-deficient plants and absolute as well as relative sulfate transport to the shoot independent of the three sulfate levels supplied to the plant. At the same time thiol contents of the shoot and the root were enhanced by fumigation with H2S and SO2. These findings are consistent with the idea that thiols produced in the leaves can mediate demand-driven control of sulfate uptake by the roots and its transport to the shoot.  相似文献   
47.
At elevated atmospheric CO2 concentrations ([CO2]a), photosynthetic capacity (Amax) and root fraction (ηR, the ratio of root to plant dry mass) increased in some studies and decreased in others. Here, we have explored possible causes of this, focusing on the relative magnitudes of the effects of elevated [CO2]a on specific leaf (nm) and plant (np) nitrogen concentrations, leaf mass per unit area (h), and plant nitrogen productivity (α). In our survey of 39 studies with 35 species, we found that elevated [CO2]a led to decreased nm and np in all the studies and to increased h and α in most of the studies. The magnitudes of these changes varied with species and with experimental conditions. Based on a model that integrated [CO2]a-induced changes in leaf nitrogen into a biochemically based model of leaf photosynthesis, we predicted that, to a first approximation, photosynthesis will be upregulated (Amax will increase) when growth at increased [CO2]a leads to increases in h that are larger than decreases in nm. Photosynthesis will be downregulated (Amax will decrease) when increases in h are smaller than decreases in nm. The model suggests that photosynthetic capacity increases at elevated [CO2]a only when additional leaf mesophyll more than compensates the effects of nitrogen dilution. We considered two kinds of regulatory paradigms that could lead to varying responses of ηR to elevated [CO2]a, and compared the predictions of each with the data. A simple static model based on the functional balance concept predicts that ηR should increase when neither np nor h is very responsive to elevated [CO2]a. The quantitative and qualitative agreement of the predictions with data from the literature, however, is poor. A model that predicts ηR from the relative sensitivities of photosynthesis and relative growth rate to elevated [CO2]a corresponds much more closely to the observations. In general, root fraction increases if the response of photosynthesis to [CO2]a is greater than that of relative growth rate.  相似文献   
48.
Ambient atmospheric CO2 concentration ([CO2]a) has apparently declined from values above 200μmol mol−1 to values below 200μmol mol−1 within the last several million years. The lower end of this range is marginal for C3 plants. I hypothesize that: (1) declining [CO2]a imposed a physiological strain on plants, and plant taxa evolving under declining [CO2]a tended to develop compensating mechanisms, including increased stomatal efficiency; (2) angiosperms were better able to adjust to declining [CO2]a than were gymnosperms and pteridophytes; and (3) angiosperm adjustment has been uneven. Fast-evolving taxa (e.g. grasses and herbs) have been better able to adapt to CO2 starvation. If these propositions are true, stomatal adjustment mechanisms should show patterned variation, and a single pattern of stomatal regulation cannot be assumed.  相似文献   
49.
Projected depletions in the stratospheric ozone layer will result in increases in solar ultraviolet-B radiation (290–320 nm) reaching the earth's surface, These increases will likely occur in concert with other environmental changes such as increases in atmospheric carbon dioxide concentrations. Currently very little information is available on the effectiveness of UV-B radiation within a CO2-enriched atmosphere, and this is especially true for trees. Loblolly pine (Pinus taeda L.) seedlings were grown in a factorial experiment at the Duke University Phytotron with either 0, 8.8 or 13.8 kJ m−2 of biologically effective UV-B radiation (UV-BBE). The CO2 concentrations used were 350 and 650 μmol mol−1. Measurements of chlorophyll fluorescence were made at 5-week intervals and photosynthetic oxygen evolution and leaf pigments were measured after 22 weeks, prior to harvest. The results of this study demonstrated a clear growth response to CO2 enrichment but neither photosynthetic capacity nor quantum efficiency were altered by CO2. The higher UV-B irradiance reduced total biomass by about 12% at both CO2 levels but biomass partitioning was altered by the interaction of CO2 and UV-B radiation. Dry matter was preferentially allocated to shoot components by UV-B radiation at 350 μmol mol−1 CO2 and towards root components at 650 μmol mol−1 CO2. These subtle effects on biomass allocation could be important in the future to seedling establishment and competitive interactions in natural as well as agricultural communities.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号