首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2363篇
  免费   143篇
  国内免费   94篇
  2024年   10篇
  2023年   27篇
  2022年   34篇
  2021年   33篇
  2020年   68篇
  2019年   59篇
  2018年   73篇
  2017年   45篇
  2016年   48篇
  2015年   65篇
  2014年   74篇
  2013年   172篇
  2012年   82篇
  2011年   65篇
  2010年   66篇
  2009年   96篇
  2008年   86篇
  2007年   97篇
  2006年   120篇
  2005年   127篇
  2004年   108篇
  2003年   104篇
  2002年   102篇
  2001年   99篇
  2000年   67篇
  1999年   64篇
  1998年   59篇
  1997年   55篇
  1996年   57篇
  1995年   46篇
  1994年   58篇
  1993年   47篇
  1992年   39篇
  1991年   33篇
  1990年   33篇
  1989年   27篇
  1988年   28篇
  1987年   28篇
  1986年   13篇
  1985年   12篇
  1984年   5篇
  1983年   6篇
  1982年   17篇
  1981年   12篇
  1980年   17篇
  1979年   9篇
  1978年   1篇
  1977年   4篇
  1975年   1篇
  1973年   2篇
排序方式: 共有2600条查询结果,搜索用时 15 毫秒
931.
932.
933.
The function and localization of proteins and peptides containing C‐terminal “CaaX” (Cys‐aliphatic‐aliphatic‐anything) sequence motifs are modulated by post‐translational attachment of isoprenyl groups to the cysteine sulfhydryl, followed by proteolytic cleavage of the aaX amino acids. The zinc metalloprotease ZMPSTE24 is one of two enzymes known to catalyze this cleavage. The only identified target of mammalian ZMPSTE24 is prelamin A, the precursor to the nuclear scaffold protein lamin A. ZMPSTE24 also cleaves prelamin A at a second site 15 residues upstream from the CaaX site. Mutations in ZMPSTE24 result in premature‐aging diseases and inhibition of ZMPSTE24 activity has been reported to be an off‐target effect of HIV protease inhibitors. We report here the expression (in yeast), purification, and crystallization of human ZMPSTE24 allowing determination of the structure to 2.0 Å resolution. Compared to previous lower resolution structures, the enhanced resolution provides: (1) a detailed view of the active site of ZMPSTE24, including water coordinating the catalytic zinc; (2) enhanced visualization of fenestrations providing access from the exterior to the interior cavity of the protein; (3) a view of the C‐terminus extending away from the main body of the protein; (4) localization of ordered lipid and detergent molecules at internal and external surfaces and also projecting through fenestrations; (5) identification of water molecules associated with the surface of the internal cavity. We also used a fluorogenic assay of the activity of purified ZMPSTE24 to demonstrate that HIV protease inhibitors directly inhibit the human enzyme in a manner indicative of a competitive mechanism.  相似文献   
934.
Small zinc finger (ZnF) motifs are promising molecular scaffolds for protein design owing to their structural robustness and versatility. Moreover, their characterization provides important insights into protein folding in general. ZnF motifs usually possess an exceptional specificity and high affinity towards Zn(II) ion to drive folding. While the Zn(II) ion is canonically coordinated by two cysteine and two histidine residues, many other coordination spheres also exist in small ZnFs, all having four amino acid ligands. Here we used high‐resolution mass spectrometry to study metal ion binding specificity and primary coordination sphere robustness of a designed zinc finger, named MM1. Based on the results, MM1 possesses high specificity for zinc with sub‐micromolar binding affinity. Surprisingly, MM1 retains metal ion binding affinity even in the presence of selective alanine mutations of the primary zinc coordinating amino acid residues.  相似文献   
935.
Synaptotagmin‐like protein 4 (Slp4), expressed in human platelets, is associated with dense granule release. Slp4 is comprised of the N‐terminal zinc finger, Slp homology domain, and C2 domains. We synthesized a compact construct (the Slp4N peptide) corresponding to the Slp4 N‐terminal zinc finger. Herein, we have determined the solution structure of the Slp4N peptide by nuclear magnetic resonance (NMR). Furthermore, experimental, chemical modification of Cys residues revealed that the Slp4N peptide binds two zinc atoms to mediate proper folding. NMR data showed that eight Cys residues coordinate zinc atoms in a cross‐brace fashion. The Simple Modular Architecture Research Tool database predicted the structure of Slp4N as a RING finger. However, the actual structure of the Slp4N peptide adopts a unique C4C4‐type FYVE fold and is distinct from a RING fold. To create an artificial RING finger (ARF) with specific ubiquitin‐conjugating enzyme (E2)‐binding capability, cross‐brace structures with eight zinc‐ligating residues are needed as the scaffold. The cross‐brace structure of the Slp4N peptide could be utilized as the scaffold for the design of ARFs.  相似文献   
936.
The UBR‐box is a 70‐residue zinc finger domain present in the UBR family of E3 ubiquitin ligases that directly binds N‐terminal degradation signals in substrate proteins. UBR6, also called FBXO11, is an UBR‐box containing E3 ubiquitin ligase that does not bind N‐terminal signals. Here, we present the crystal structure of the UBR‐box domain from human UBR6. The dimeric crystal structure reveals a unique form of domain swapping mediated by zinc coordination, where three independent protein chains come together to regenerate the topology of the monomeric UBR‐box fold. Analysis of the structure suggests that the absence of N‐terminal residue binding arises from the lack of an amino acid binding pocket.  相似文献   
937.
Organoselenium compounds, such as diphenyl diselenide (PhSe)2 and phenylselenium zinc chloride (PhSeZnCl), show protective activities related to their thiol peroxidase activity. However, depending on experimental conditions, organoselenium compounds can cause toxicity by oxidising thiol groups of proteins and induce the production of reactive oxygen species (ROS). Here, we analysed the toxicity of (PhSe)2 and PhSeZnCl in yeast Saccharomyces cerevisiae. Cell growth of S. cerevisiae after 1, 2, 3, 4, 6, and 16?h of treatment with 2, 4, 6, and 10?μM of (PhSe)2 was evaluated. For comparative purpose, PhSeZnCl was analysed only at 16?h of incubation at equivalent concentrations of selenium (i.e. 4, 8, 12, and 20?μM). ROS production (DCFH-DA), size, granularity, and cell membrane permeability (propidium iodide) were determined by flow cytometry. (PhSe)2 inhibited cell growth at 2?h (10?μM) of incubation, followed by increase in cell size. The increase of cell membrane permeability and granularity (10?μM) was observed after 3?h of incubation, however, ROS production occurs only at 16?h of incubation (10?μM) with (PhSe)2, indicating that ROS overproduction is a more likely consequence of (PhSe)2 toxicity and not its determinant. All tested parameters showed that only concentration of 20?μM induced toxicity in samples incubated with PhSeZnCl. In summary, the results suggest that (PhSe)2 toxicity in S. cerevisiae is time and concentration dependent, presenting more toxicity when compared with PhSeZnCl.  相似文献   
938.
The present study was aimed to analyze the effects of external Zn supply on arsenic (As) toxicity in Hydrilla verticillata (L.f.) Royle. The plants were exposed to arsenite (AsIII; 10 μM) with or without 50 and 100 μM Zn. The level of As accumulation (μg g?1 dw) after 2 and 4 days was not significantly affected by Zn supply. The plants showed a significant stimulation of the thiol metabolism (nonprotein thiols, cysteine, glutathione-S-transferase activity) upon As(III) exposure in the presence of Zn as compared to As(III) alone treatment. Besides, they did not experience significant toxicity, measured in terms of hydrogen peroxide and malondialdehyde accumulation, which are the indicators of oxidative stress. The minus Zn plants suffered from oxidative stress probably due to insufficient increase in thiols to counteract the stress. Stress amelioration by Zn supply was also evident from antioxidant enzyme activities, which came close to control levels with increasing Zn supply as compared to the increase observed in As(III) alone treatment. Variable Zn supply also modulated the level of photosynthetic pigments and restored them to control levels. In conclusion, an improved supply of Zn to plants was found to augment their ability to withstand As toxicity through enhanced thiol metabolism.  相似文献   
939.
Nd3+‐doped lead‐free zinc phosphate glasses with the chemical compositions (60‐x) NH4H2PO4 + 20ZnO + 10BaF2 + 10NaF + xNd2O3 (where x = 0.5, 1.0, 1.5, 2.0 and 2.5 mol%) were prepared using a melt quenching technique. Vibrational bands were assigned and clearly elucidated by Raman spectral profiles for all the glass samples. Judd–Ofelt (J–O) intensity parameters (Ωλ: λ = 2, 4, 6) were obtained from the spectral intensities of different absorption bands of Nd3+ ions. Radiative properties such as radiative transition probabilities (AR), radiative lifetimes (τR) and branching ratios (βR) for different excited states were calculated using J–O parameters. The near infrared (NIR) photoluminescence spectra exhibited three emission bands (4F3/2 level to 4I13/2, 4I11/2 and 4I9/2 states) for all the concentrations of Nd3+ ions. Various luminescence properties were studied by varying the Nd3+ concentration for the three spectral profiles. Fluorescence decay curves of the 4F3/2 level were recorded. The energy transfer mechanism that leads to quenching of the 4F3/2 state lifetimes was discussed at higher concentration of Nd3+ ions. These glasses are suggested as suitable hosts to produce efficient lasing action in NIR region at 1.05 μm.  相似文献   
940.
The quantification of zinc in over‐the–counter drugs as commercial propolis extracts by molecular fluorescence technique using meso ‐tetrakis(4‐carboxyphenyl)porphyrin (H2TCPP4) was developed for the first time. The calibration curve is linear from 6.60 to 100 nmol L?1 of Zn2+. The detection and quantification limits were 6.22 nmol L?1 and 19.0 nmol L?1, respectively. The reproducibility and repeatability calculated as the percentage variation of slopes of seven calibration curves were 6.75% and 4.61%, respectively. Commercial propolis extract samples from four Brazilian states were analyzed and the results (0.329–0.797 mg/100 mL) obtained with this method are in good agreement with that obtained with the Atomic Absorption Spectroscopy (AAS) technique. The method is simple, fast, of low cost and allows the analysis of the samples without pretreatment. Moreover the major advantage is that Zn‐porphyrin complex presents fluorescent characteristic promoting the selectivity and sensitivity of the method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号