首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157篇
  免费   20篇
  国内免费   18篇
  195篇
  2024年   1篇
  2023年   2篇
  2022年   3篇
  2021年   9篇
  2020年   4篇
  2019年   14篇
  2018年   11篇
  2017年   8篇
  2016年   3篇
  2015年   6篇
  2014年   10篇
  2013年   8篇
  2012年   10篇
  2011年   8篇
  2010年   8篇
  2009年   11篇
  2008年   10篇
  2007年   8篇
  2006年   11篇
  2005年   5篇
  2004年   5篇
  2003年   5篇
  2002年   4篇
  2001年   5篇
  2000年   6篇
  1999年   4篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1988年   2篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1976年   1篇
排序方式: 共有195条查询结果,搜索用时 15 毫秒
81.
The effects of zero tillage and residue conservation in continuous maize-cropping systems are poorly documented, especially in the tropics, and are expected to vary highly with climatic conditions and nitrogen availability. In the present study, maize was cultivated during the wet and dry seasons in central Mexico for three consecutive years, under different treatments combining tillage with residue management techniques and with nitrogen rates. In some treatments, maize was also intercropped with jackbean, Canavalia ensiformis L. (DC). Yield and yield components as well as physiological traits and soil characteristics were assessed during the wet and dry seasons for the third year of cultivation. During the wet season, zero tillage was associated with less biomass and grain yield. Leaf chlorophyll concentration was smaller under zero tillage, suggesting less nitrogen uptake. Both zero tillage and residue conservation reduced early growth and strongly increased ear rot. During the dry season, zero tillage was associated with greater root mass, as measured by electrical capacitance. Residue conservation decreased the anthesis-silking interval, suggesting better water uptake. There was, however, no significant effect of tillage or residue management practices on yield. Zero tillage was found to be associated with increased soil bulk density, nitrogen concentration and microbial biomass organic carbon. Residue conservation increased soil carbon concentration as well as microbial biomass organic carbon. Intercropping with jackbean and conservation of its residues in addition to maize residues increased soil nitrogen concentration. Further investigation may provide more information on the factors related to zero tillage and residue conservation that affect maize early growth, and determine to which extent the observed modifications of soil chemical and physical properties induced by conservation tillage will further affect maize yield.  相似文献   
82.
We present an optically detected magnetic resonance (ODMR) and electron paramagnetic resonance (EPR) spectroscopic study on the quenching of photo-induced chlorophyll triplet states by carotenoids, in the intrinsic light-harvesting complex (LHC) from the dinoflagellate Amphidinium carterae.Two carotenoid triplet states, differing in terms of optical and magnetic spectroscopic properties, have been identified and assigned to peridinins located in different protein environment. The results reveal a parallelism with the triplet-triplet energy transfer (TTET) process involving chlorophyll a and luteins observed in the LHC-II complex of higher plants. Starting from the hypothesis of a conserved alignment of the amino acid sequences at the cores of the LHC and LHC-II proteins, the spin-polarized time-resolved EPR spectra of the carotenoid triplet states of LHC have been calculated by a method which exploits the conservation of the spin momentum during the TTET process. The analysis of the spectra shows that the data are compatible with a structural model of the core of LHC which assigns the photo-protective function to two central carotenoids surrounded by the majority of Chl a molecules present in the protein, as found in LHC-II. However, the lack of structural data, and the uncertainty in the pigment composition of LHC, leaves open the possibility that this complex posses a different arrangement of the pigments with specific centers of Chl triplet quenching.  相似文献   
83.
Determining optimal management practices for the profitable production of perennial energy crops is critical for scaling up production beyond experimental levels. Although many experimental field studies have examined the effects of management practices on the performance of miscanthus and switchgrass, there are no recommendations for economically optimal nitrogen (N) application rates and how they should vary spatially and with the age of the energy crop as well as on optimal rotation age of the energy crop to maximize profits. We develop a modeling framework to determine economically optimal crop management decisions and simulate the variability under various scenarios for miscanthus and switchgrass production across 2287 counties in the rainfed United States. We find that profit-maximizing N recommendations for these crops vary across maturity stages and regions and can increase the landowner's profits compared with a uniform N rate across ages and regions. We also find that the optimal rotation for these crops is shorter than the productive physical lifespan (15–20 and 10 years for miscanthus and switchgrass, respectively). Specifically, the N rate that maximizes the economic returns is negligible for miscanthus and 111 kg ha−1 for switchgrass production at age 2. The mean profit-maximizing N rate increases with age for miscanthus, peaking at 151 kg ha−1 at age 11 before declining to 114 kg ha−1 at the optimal rotation age of 13 years while that for switchgrass is 150 kg ha−1 for middle-aged stands and declines to 114 kg ha−1 at the optimal rotation of 8–9 years. We find that miscanthus is the most profitable energy crop in the northern region of the rainfed United States while switchgrass is most profitable in the south of the rainfed United States. Our findings are useful for improving assessments of the profitability of energy crops and guiding future management decisions by landowners.  相似文献   
84.
Buildings represent a critical piece of a low‐carbon future, and their long lifetime necessitates urgent adoption of state‐of‐the‐art performance standards to avoid significant lock‐in risk regarding long‐lasting technology solution choices. Buildings, mobility, and energy systems are closely linked, and assessing their nexus by aiming for Zero Emission Neighborhoods (ZENs) provides a unique chance to contribute to climate change mitigation. We conducted a life‐cycle assessment of a Norwegian ZEN and designed four scenarios to test the influence of the house size, household size, and energy used and produced in the buildings as well as mobility patterns. We ran our scenarios with different levels of decarbonization of the electricity mix over a period of 60 years. Our results show the importance of the operational phases of both the buildings and mobility in the neighborhood's construction, and its decline over time induced by the decarbonization of the electricity mix. At the neighborhood end‐of‐life, embodied emissions then become responsible for the majority of the emissions when the electricity mix is decarbonized. The choice of functional unit is decisive, and we thus argue for the use of a primary functional unit “per neighborhood,” and a second “per person.” The use of a “per m2” functional unit is misleading as it does not give credits to the precautionary use of floor area. To best mitigate climate change, climate‐positive behaviors should be combined with energy efficiency standards that incorporate embodied energy, and absolute threshold should be combined with behavioral changes.  相似文献   
85.
“Zero‐strain” compounds are ideal energy‐storage materials for long‐term cycling because they present negligible volume change and significantly reduce the mechanically induced deterioration during charging–discharging. However, the explored “zero‐strain” compounds are very limited, and their energy densities are low. Here, γ phase Li3.08Cr0.02Si0.09V0.9O4 (γ‐LCSVO) is explored as an anode compound for lithium‐ion batteries, and surprisingly its “zero‐strain” Li+ storage during Li+ insertion–extraction is found through using various state‐of‐the‐art characterization techniques. Li+ sequentially inserts into the 4c(1) and 8d sites of γ‐LCSVO, but its maximum unit‐cell volume variation is only ≈0.18%, the smallest among the explored “zero‐strain” compounds. Its mean strain originating from Li+ insertion is only 0.07%. Consequently, both γ‐LCSVO nanowires (γ‐LCSVO‐NW) and micrometer‐sized particles (γ‐LCSVO‐MP) exhibit excellent cycling stability with 90.1% and 95.5% capacity retention after as long as 2000 cycles at 10C, respectively. Moreover, γ‐LCSVO‐NW and γ‐LCSVO‐MP respectively deliver large reversible capacities of 445.7 and 305.8 mAh g?1 at 0.1C, and retain 251.2 and 78.4 mAh g?1 at 10C. Additionally, γ‐LCSVO shows a suitably safe operating potential of ≈1.0 V, significantly lower than that of the famous “zero‐strain” Li4Ti5O12 (≈1.6 V). These merits demonstrate that γ‐LCSVO can be a practical anode compound for stable, high‐energy, fast‐charging, and safe Li+ storage.  相似文献   
86.
目前,我国种植的夏玉米品种收获时籽粒含水率过高,限制了玉米机械粒收技术的发展。喷施脱水剂可以调控作物籽粒灌浆生理过程,降低收获时的籽粒含水率。本试验研究了喷施脱水剂对不同熟期夏玉米品种脱水过程、收获期籽粒含水率和籽粒品质的调控作用。结果表明: 喷施脱水剂减少了玉米各器官的干物质积累量,促进了植株向籽粒中的干物质转移,提高了收获指数,而且对籽粒品质没有显著影响。相关性分析显示,籽粒脱水速率与各器官脱水速率呈正相关,喷施脱水剂后籽粒脱水速率与茎鞘脱水速率呈极显著正相关。喷施脱水剂在产量没有显著降低的前提下提高了总脱水速率,缩短了开花期至生理成熟期的时间,增加了生理成熟期到收获的时间,有利于后期籽粒含水率的进一步降低,为玉米机械粒收提供了更大的可能性。不同熟期夏玉米品种喷施脱水剂进行机械粒收的经济效益与机械穗收相比没有显著差异,中晚熟品种的经济效益高于早熟品种。因此,收获前合理喷施脱水剂可以作为玉米机收籽粒的一种可行性配套技术。  相似文献   
87.
针对湖北西部坡耕地小麦生产存在的施肥不科学、籽粒品质不稳、种植效益低下等关键问题,连续2年在丹江口库区坡耕地“玉米-小麦”轮作制度下,研究3种优化种植模式(高氮减钾、中氮减钾、低氮减钾)对小麦产量、品质、效益和肥料利用效率的影响。结果表明:施用化学肥料显著提高了小麦籽粒产量和湿面筋含量。与常规种植模式(CK)相比,3种优化种植模式的钾肥偏生产力和农学利用率显著提高。高氮减钾模式的小麦干物质量、籽粒产量和粗蛋白含量最高,比CK分别增加9.4%、19.4%和7.8%,有利于小麦高产潜力的发挥;中氮减钾模式的小麦湿面筋含量和降落数值最高,分别比CK增加3.9%和9.3%,适用于中筋小麦的高效生产;低氮减钾模式的氮肥偏生产力、氮肥农学利用率、钾肥偏生产力、钾肥农学利用率和净收益最高,分别比CK提高15.7%、134.1%、131.3%、368.2%和37.3%,粗蛋白和湿面筋含量分别比CK降低2.1%和2.6%,适用于弱筋小麦绿色轻简化生产。本研究结果可为坡耕地小麦生产选择适宜的种植模式提供参考。  相似文献   
88.
Nanoparticles (NPs) due to their small size and high surface area induce remarkable adverse effects on the biological systems. However, the exact mechanism by which NPs interacted with biological system and induce their adverse effects is still an enigma. Herein, the interaction of zero valent iron NPs (ZVFe NPs) with human hemoglobin (Hb) was evaluated using a variety of techniques including circular dichroism, fluorescence, and UV–visible (UV–vis) spectroscopy methods. Also, the cytotoxicity of ZVFe NPs on the human lymphocyte cell line as a model of blood system cell line was investigated by reactive oxygen species (ROS), caspase-9, and caspase-3 activities assays. It was revealed that ZVFe NP interaction resulted in heme displacement and degradation and induction of protein cabonylation. It was also shown that ZVFe NPs impaired the complexity of lymphocyte cells through ROS generation and apoptotic pathway. Together, these data suggest that NPs influence the biological system and induce adverse effects through ROS generation.  相似文献   
89.
We introduce an in vivo spectroscopic method to assess the effects of diet on fatty acid composition of the predominant chemical constituent of adipocytes in mice. To do this, we make use of a nonlinear NMR signal that, unlike a standard NMR signal, is intrinsically insensitive to local magnetic field inhomogeneities and which naturally suppresses the large water signal from nonfatty tissues. Our method yields fat composition information from fat depots distributed over large sample volumes in a single experiment, without requiring the use of tedious shimming procedures, voxel selection, or water suppression. Our results suggest that this method can reveal clear differences in adipose tissue composition of mice fed a standard chow diet compared with mice fed a diet rich in polyunsaturated fatty acids. With further developments this method could be used to obtain information on human lipid composition noninvasively and to track changes in lipid composition induced by diet intervention, pharmaceutical drugs, and exercise.  相似文献   
90.
The luminostat regime has been proposed as a way to maximize light absorption and thus to increase the microalgae photosynthetic efficiency within photobioreactors. In this study, simulated outdoor light conditions were applied to a lab-scale photobioreactor in order to evaluate the luminostat control under varying light conditions. The photon flux density leaving the reactor (PFDout) was varied from 4 to 20 μmol photons m−2 s−1and the productivity and photosynthetic efficiency of Chlorella sorokiniana were assessed.Maximal volumetric productivity (1.22 g kg−1 d−1) and biomass yield on PAR photons (400-700 nm) absorbed (1.27 g mol−1) were found when PFDout was maintained between 4 and 6 μmol photons m−2 s−1. The resultant photosynthetic efficiency was comparable to that already reported in a chemostat-controlled reactor. A strict luminostat regime could not be maintained under varying light conditions. Further modifications to the luminostat control are required before application under outdoor conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号