首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3481篇
  免费   291篇
  国内免费   851篇
  4623篇
  2024年   12篇
  2023年   70篇
  2022年   79篇
  2021年   118篇
  2020年   147篇
  2019年   158篇
  2018年   151篇
  2017年   148篇
  2016年   147篇
  2015年   150篇
  2014年   192篇
  2013年   234篇
  2012年   146篇
  2011年   212篇
  2010年   176篇
  2009年   247篇
  2008年   210篇
  2007年   213篇
  2006年   161篇
  2005年   141篇
  2004年   118篇
  2003年   114篇
  2002年   99篇
  2001年   111篇
  2000年   84篇
  1999年   78篇
  1998年   62篇
  1997年   67篇
  1996年   61篇
  1995年   64篇
  1994年   74篇
  1993年   70篇
  1992年   59篇
  1991年   65篇
  1990年   47篇
  1989年   30篇
  1988年   24篇
  1987年   41篇
  1986年   34篇
  1985年   29篇
  1984年   42篇
  1983年   18篇
  1982年   44篇
  1981年   17篇
  1980年   21篇
  1979年   14篇
  1978年   7篇
  1977年   7篇
  1976年   6篇
  1973年   3篇
排序方式: 共有4623条查询结果,搜索用时 15 毫秒
81.
Radical-pair decay kinetics and molecular triplet quantum yields at various magnetic fields are reported for quinone-depleted reaction centers from the photosynthetic bacterium Rhodopseudomonas sphaeroides R26. The radical-pair decay is observed by picosecond absorption spectroscopy to be a single exponential to within the experimental uncertainty at all fields. The decay time increases from 13 ns at zero field to 17 ns at 1 kG, and decreases to 9 ns at 50 kG. The orientation averaged quantum yield of formation of the molecular triplet of the primary electron donor, 3P, drops to 47% of its zero-field value at 1 kG and rises to 126% at 50 kG. Combined analysis of these data gives a singlet radical-pair decay rate constant of 5 · 107s?1, a lower limit for the triplet radical-pair decay rate constant of 1 · 108s?1 and a lower limit for the quantum yield of radical-pair decay by the triplet channel of 38% at zero field. The upper limit of the quantum yield of 3P formation at zero field is measured to be 32%. In order to explain this apparent discrepancy, decay of the radical pair by the triplet channel must lead to some rapid ground state formation as well as some 3P formation. It is proposed that the triplet radical pair decays to a triplet charge-transfer state which is strongly coupled to the ground state by spin-orbit interactions. Several possibilities for this charge-transfer state are discussed.  相似文献   
82.
Summary Small differences in N2 fixation by nodulated soybeans (Glycine max. (L.) Merr.), inoculated with various strains ofRhizobium japonicum, were assessed in field experiments using15N methodology, and compared with yields of plant dry matter and total N. Percentage of plant-N derived from atmospheric N2 and from fertilizer, and values of %15N atom excess had lower coefficients of variation than did total N and dry matter yield. Nevertheless the precision of estimates of kg N/ha fixed were sufficient to differentiate only the extremes of the range of strains tested, and there were discrepancies between ranking of strains based on % N derived from fertilizer and on total N yield.  相似文献   
83.
Herman Kramer  Paul Mathis   《BBA》1980,593(2):319-329
The formation of the triplet state of carotenoids (detected by an absorption peak at 515 nm) and the photo-oxidation of the primary donor of Photosystem II, P-680 (detected by an absorption increase at 820 nm) have been measured by flash absorption spectroscopy in chloroplasts in which the oxygen evolution was inhibited by treatment with Tris. The amount of each transient form has been followed versus excitation flash intensity (at 590 or 694 nm). At low excitation energy the quantum yield of triplet formation (with the Photosystem II reaction center in the state Q) is about 30% that of P-680 photo-oxidation. The yield of carotenoid triplet formation is higher in the state Q than in the state Q, in nearly the same proportion as chlorophyll a fluorescence. It is concluded that, for excited chlorophyll a, the relative rates of intersystem crossing to the triplet state and of fluorescence emission are the same in vivo as in organic solvent. At high flash intensity the signal of P-680+ completely saturates, whereas that of carotenoid triplet continues to increase.

The rate of triplet-triplet energy transfer from chlorophyll a to carotenoids has been derived from the rise time of the absorption change at 515 nm, in chloroplasts and in several light-harvesting pigment-protein complexes. In all cases the rate is very high, around 8 · 107 s−1 at 294 K. It is about 2–3 times slower at 5 K. The transitory formation of chlorophyll triplet has been verified in two pigment-protein complexes, at 5 K.  相似文献   

84.
A model is described, which allows the determination of 95% confidence limits for the maintenance coefficient and the efficiency of oxidative phosphorylation for chosen values of the growth yield for ATP corrected for energy maintenance (Y ATP max ). As experimental data the specific rates of substrate consumption, product formation and oxygen uptake in chemostat cultures at various growth rates are used.  相似文献   
85.
P/2e ratios were calculated from anaerobic chemostat cultures of Paracoccus denitrificans with nitrogenous oxides as electron acceptor. P/2e ratios were calculated, using the Y ATP max values determined for aerobic cultures. When succinate was the carbon and energy source the average P/2e values of the sulphate-and succinate-limited cultures with nitrate as electron acceptor were 0.5 and 0.7, respectively, and of the nitrite-limited culture 0.9. With gluconate as carbon and energy source the average P/2e values of the gluconate-limited with nitrate as electron acceptor and nitrate limited cultures were 0.9 and 1.1, respectively.H+/O ratios measured in cells obtained from sulphate-, succinate, nitrite-, gluconate-and nitratelimited cultures yielded respective average values of 3.4, 4.5, 3.5, 4.8 and 6.2 for endogenous substrates. From our data we conclude that sulphate-and nitritelimitation causes the loss of site I phosphorylation. Nitrite has no influence on the maximum growth yield on ATP. We propose that metabolism in heterotrophically grown cells of Paracoccus dentrificans is regulated on the level of phosphorylation in the site I region of the electron transport chain.  相似文献   
86.
Abstract A mass spectrometer with membrane inlet was used to measure methane and oxygen utilization rates at various methane concentrations in Methylosinus trichosporium and a locally isolated strain of a methane-oxidizing coccus (OU-4-1). The apparent K m for methane was found to be 2 μM for M. trichosporium and 0.8 μM for strain OU-4-1. These K m-values are 10–30 times lower than most previously reported values. The ratio of oxygen to methane utilization rates was 1.7 for M. trichosporium and 1.5 for strain OU-4-1 corresponding to a growth yield of 0.38 and 0.63 g dry weight/g methane, respectively.  相似文献   
87.
刘杰  严建兵 《植物学报》1983,54(5):554-557
密植是提高作物单位面积产量、促进粮食增产的重要途径之一。叶夹角是影响玉米(Zea mays)密植的关键因子。中国农业大学田丰课题组最近克隆了2个调控玉米叶夹角的数量性状位点(QTL)——UPA1UPA2, 揭示了这2个位点的功能基因(brd1ZmRAVL1)通过油菜素内酯(BR)信号通路调控叶夹角。UPA2位于ZmRAVL1上游9.5 kb, 可与DRL1蛋白结合。另一个影响玉米叶夹角的蛋白LG1可以激活ZmRAVL1的表达; DRL1蛋白与LG1蛋白直接互作抑制LG1对ZmRAVL1的激活表达。玉米祖先种大刍草(teosinte)的UPA2位点序列与DRL1蛋白结合能力更强, 导致大刍草ZmRAVL1的表达受到更强的抑制, 下调表达的ZmRAVL1进一步使下游基因brd1的表达下调, 进而降低叶环区的内源BR水平, 导致叶夹角变小。将大刍草的UPA2等位基因导入到玉米中或对玉米中ZmRAVL1进行基因编辑, 在密植条件下均可显著提高玉米产量。上述发现为高产玉米品种的分子育种改良提供了重要理论基础和基因资源。  相似文献   
88.
Methodology is presented for the determination of growth yield (Y(g)) and maintenance coefficient (m) for carbon utilization of plant cells grown in suspension culture. Estimation of Y(g) and m requires measurements of specific growth rate (micro) and specific rate of substrate uptake (q) at different growth limiting substrate concentrations. Batch culture of tobacco cells did not permit evaluation of Y(g) and m because micro is constant and maximal during most of the growth cycle. In batch culture, the period of declining specific growth rate is extremely brief because of the rapid transition from logarithmic growth to stationary phase. This occurs because the K(m) for growth is relatively small compared to the initial sucrose concentration. Thus, when the substrate level reaches the K(m), the large mass of cells rapidly depletes the remaining substrate. In contrast, semicontinuous culture facilitates the determination of Y(g) and m because various steady-state growth rates can be achieved. Mathematical expressions were developed to determine the effective values of micro and q over the semicontinuous replacement interval. The validity of this approach was verified by conducting simulations using experimentally determined parameters.  相似文献   
89.
Effects of various nutritional and environmental factors on the accumulation of organic acids (mainly L-malic acid) by the filamentous fungus Aspergillus flavus were studied in a 16-L stirred fermentor. Improvement of the molar yield (moles acid produced per moles glucose consumed) of L-malic acid was obtained mainly by increasing the agitation rate (to 350 rpm) and the Fe(z+) ion concentration (to 12 mg/L) and by lowering the nitrogen (to 271 mg/L) and phosphate concentrations (to 1.5 mM) in the medium. These changes resulted in molar yields for L-malic acid and total C(4) acids (L-malic, succinic, and fumaric acids) of 128 and 155%, respectively. The high molar yields obtained (above 100%) are additional evidence for the operation of part of the reductive branch of the tricarboxylic acid cycle in L-malic acid accumulation by A. flavus. The fermentation conditions developed using the above mentioned factors and 9% CaCO(3) in the medium resulted in a high concentration (113 g/L L-malic acid from 120 g/L glucose utilized) and a high overall productivity (0.59 g/L h) of L-malic acid. These changes in acid accumulation coincide with increases in the activities of NAD(+)-malate dehydrogenase, fumarase, and citrate synthase.  相似文献   
90.
A reliable and practical method is proposed for increasing sensitivity and detection efficiency of immunocytochemical techniques, based on silver enhancement of the nickel-diaminobenzidine product of the peroxidase reaction. The procedure produces a strong signal at the site of the end product of the peroxidase reaction which is visible as black grains at the light microscopic level. The method has been used to detect peroxidase labeled probes in immunocytochemical tissue preparations and blotting assays and is ideal for the purposes of double staining and photographic documentation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号