首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1539篇
  免费   46篇
  国内免费   93篇
  2023年   26篇
  2022年   36篇
  2021年   34篇
  2020年   41篇
  2019年   32篇
  2018年   51篇
  2017年   26篇
  2016年   34篇
  2015年   44篇
  2014年   84篇
  2013年   167篇
  2012年   53篇
  2011年   80篇
  2010年   57篇
  2009年   82篇
  2008年   113篇
  2007年   84篇
  2006年   86篇
  2005年   81篇
  2004年   78篇
  2003年   51篇
  2002年   43篇
  2001年   32篇
  2000年   17篇
  1999年   21篇
  1998年   9篇
  1997年   18篇
  1996年   13篇
  1995年   9篇
  1994年   22篇
  1993年   23篇
  1992年   17篇
  1991年   11篇
  1990年   8篇
  1989年   4篇
  1988年   10篇
  1987年   6篇
  1986年   6篇
  1985年   11篇
  1984年   10篇
  1983年   8篇
  1982年   7篇
  1981年   5篇
  1980年   7篇
  1979年   5篇
  1978年   3篇
  1977年   2篇
  1976年   3篇
  1974年   4篇
  1973年   2篇
排序方式: 共有1678条查询结果,搜索用时 15 毫秒
91.
Li C  Liu Q  Song X  Di D  Ji A  Qu Y 《Biotechnology letters》2003,25(24):2113-2116
A Pseudomonas sp. was isolated with enantioselective epoxide hydrolase activity to ethyl 3-phenylglycidate. Cells grown on sucrose and suspended in 10% (v/v) dimethyl formamide as co-solvent produced (2R,3S) ethyl 3-phenylglycidate with 95% ee and 26% yield in 12 h from 0.2% (w/v) of the racemate.  相似文献   
92.
93.
Raffinose and stachyose are ubiquitous galactosyl-sucrose oligosaccharides in the plant kingdom which play major roles, second only to sucrose, in photoassimilate translocation and seed carbohydrate storage. These sugars are initially metabolised by alpha-galactosidases (alpha-gal). We report the cloning and functional expression of the first genes, CmAGA1 and CmAGA2, encoding for plant alpha-gals with alkaline pH optima from melon fruit (Cucumis melo L.), a raffinose and stachyose translocating species. The alkaline alpha-gal genes show very high sequence homology with a family of undefined 'seed imbibition proteins' (SIPs) which are present in a wide range of plant families. In order to confirm the function of SIP proteins, a representative SIP gene, from tomato, was expressed and shown to have alkaline alpha-gal activity. Phylogenetic analysis based on amino acid sequences shows that the family of alkaline alpha-gals shares little homology with the known prokaryotic and eukaryotic alpha-gals of glycosyl hydrolase families 27 and 36, with the exception of two cross-family conserved sequences containing aspartates which probably function in the catalytic step. This previously uncharacterised, plant-specific alpha-gal family of glycosyl hydrolases, with optimal activity at neutral-alkaline pH likely functions in key processes of galactosyl-oligosaccharide metabolism, such as during seed germination and translocation of RFO photosynthate.  相似文献   
94.
We measured the activity of several acid hydrolases of cultured oligodendrocytes prepared from adult bovine brain white matter to clarify the biochemical basis of bovine oligodendrocytes in vitro. Lysosomal enzyme activities were assayed by using 4-methylumbelliferyl glycosides as substrates. Lysosomal enzyme activities became higher at 8–11 days in vitro (DIV) than 4 DIV. The enrichment in acid hydrolase specific activities in oligodendrocytes may be associated with lysosomal origin of myelin-like membranes.  相似文献   
95.
Drosophila melanogaster embryos are a source for homogeneous and stable 26S proteasomes suitable for structural studies. For biochemical characterization, purified 26S proteasomes were resolved by two-dimensional (2D) gel electrophoresis and subunits composing the regulatory complex (RC) were identified by amino acid sequencing and immunoblotting, before corresponding cDNAs were sequenced. 17 subunits from Drosophila RCs were found to have homologues in the yeast and human RCs. An additional subunit, p37A, not yet described in RCs of other organisms, is a member of the ubiquitin COOH-terminal hydrolase family (UCH). Analysis of EM images of 26S proteasomes-UCH-inhibitor complexes allowed for the first time to localize one of the RC's specific functions, deubiquitylating activity.The masses of 26S proteasomes with either one or two attached RCs were determined by scanning transmission EM (STEM), yielding a mass of 894 kD for a single RC. This value is in good agreement with the summed masses of the 18 identified RC subunits (932 kD), indicating that the number of subunits is complete.  相似文献   
96.
Structure and function of S-adenosylhomocysteine hydrolase   总被引:6,自引:0,他引:6  
In mammals, S-adenosylhomocysteine hydrolase (AdoHcyase) is the only known enzyme to catalyze the breakdown of S-adenosylhomocysteine (AdoHcy) to homocysteine and adenosine. AdoHcy is the product of all adenosylmethionine (AdoMet)-dependent biological transmethylations. These reactions have a wide range of products, and are common in all facets of biometabolism. As a product inhibitor, elevated levels of AdoHcy suppress AdoMet-dependent transmethylations. Thus, AdoHcyase is a regulator of biological transmethylation in general. The three-dimensional structure of AdoHcyase complexed with reduced nicotinamide adenine dinucleotide phosphate (NADH) and the inhibitor (1′R, 2′S, 3′R)-9-(2′,3′-dihyroxycyclopenten-1-yl)adenine (DHCeA) was solved by a combination of the crystallographic direct methods program, SnB, to determine the selenium atom substructure and by treating the multiwavelength anomalous diffraction data as a special case of multiple isomorphous replacement. The enzyme architecture resembles that observed for NAD-dependent dehydrogenases, with the catalytic domain and the cofactor binding domain each containing a modified Rossmann fold. The two domains form a deep active site cleft containing the cofactor and bound inhibitor molecule. A comparison of the inhibitor complex of the human enzyme and the structure of the rat enzyme, solved without inhibitor, suggests that a 17° rigid body movement of the catalytic domain occurs upon inhibitor/substrate binding.  相似文献   
97.
A genetically engineered strain of Escherichia coli that expresses organophosphorus hydrolase (OPH) was immobilized in a polyvinyl alcohol (PVA) cryogel to form a porous biocatalyst that successfully degrades organophosphorus (OP) neurotoxins. The impacts of both diffusion and reaction on biocatalyst efficiency were determined to enable prediction and optimization of the biocatalyst performance. The kinetic rate parameters and activation energies of pure OPH, free cell suspensions, and the immobilized cell biocatalyst were compared. Diffusion was a determining factor for paraoxon hydrolysis because of the very rapid OPH kinetics for its model substrate. Both the paraoxon diffusion through the PVA matrix and the diffusion associated with microbial transport of paraoxon were shown to impact the biocatalyst reaction. However, the enhancement in storage stability resulting from diffusional limitations provides an advantage to diffusion-limited operation. This research may serve as a guide to define the influence of diffusion in biological reaction systems. The broad substrate specificity and hydrolytic efficiency of OPH coupled with the ability to genetically engineer the enzyme for specific target OP neurotoxins enhance the suitability of OPH-based technologies for detoxification of these compounds. Cryoimmobilization provides a suitable vehicle as a cost-effective, efficient technology for bioremediation of environmental media contaminated with OP compounds.  相似文献   
98.
99.
One hundred and eleven strains of Basidiomycota, 39 strains of Ascomycota and 2 strains of Mucoromycotina belonging to wood decomposers that cause white-rot (WR) or brown-rot (BR), other wood associated saprotrophs (WA), litter decomposing cord-forming Basidiomycota (LDF), and saprotrophic microfungi (SA), were screened for the production of hydrolytic enzymes and laccase. The presence of enzyme-encoding genes was also analysed in the published genomes of saprotrophic fungi. Several genes, including those for acidic phosphatase, β-glucosidase and N-acetylglucosaminidase, were common in the genomes with enzyme activity widely displayed by fungi, while other enzymes, such as certain hemicellulases or laccase, were produced less frequently. Enzyme production by saprotrophic fungi was shaped by the combination of their ecophysiology and taxonomy. Basidiomycota exhibited higher activities of all enzymes, except alkaline phosphatase, α-glucosidase, N-acetylglucosaminidase, α-mannosidase and α-fucosidase, than Ascomycota. The SA and BR fungi showed distinct enzyme production patterns, while the enzyme production by WR, LDF and WA was similar. Differences among species were typically reflected in the level of enzyme activity rather than in the absence of enzymes. Enzyme screening results showed that in several cases, fungi exhibited enzyme activity without the presence of the corresponding gene and vice versa. This indicates that the use of genome-derived information for the prediction of potential enzyme production has substantial limitations and cannot replace functional screening of fungal cultures.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号