首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   460篇
  免费   73篇
  国内免费   25篇
  2024年   1篇
  2023年   13篇
  2022年   7篇
  2021年   31篇
  2020年   27篇
  2019年   29篇
  2018年   21篇
  2017年   27篇
  2016年   25篇
  2015年   25篇
  2014年   25篇
  2013年   29篇
  2012年   15篇
  2011年   13篇
  2010年   17篇
  2009年   30篇
  2008年   24篇
  2007年   27篇
  2006年   25篇
  2005年   12篇
  2004年   14篇
  2003年   12篇
  2002年   14篇
  2001年   17篇
  2000年   19篇
  1999年   16篇
  1998年   13篇
  1997年   4篇
  1996年   7篇
  1995年   3篇
  1994年   4篇
  1993年   1篇
  1990年   3篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1982年   2篇
  1978年   1篇
排序方式: 共有558条查询结果,搜索用时 31 毫秒
131.
In the tradition of European phytosociology, delimitations of vegetation units such as associations are mostly based on data from small areas where more detailed vegetation sampling has been carried out. Such locally delimited vegetation units are often accepted in large-scale synthetic classifications, e.g. national vegetation monographs, and tentatively assigned to a small geographical range, forming groups of similar (vicarious) vegetation units in different small areas. These vicarious units, however, often overlap in species composition and are difficult to recognize from each other. We demonstrate this issue using an example of the classification of dry grasslands (Festuco-Brometea) in the Czech Republic. The standard vegetation classification of the Czech Republic supposes that the majority of accepted associations (66 out of 68) have a restricted distribution in one of the two major regions, Bohemia or Moravia. We compared the classification into traditional associations with the numerical classification of 1440 phytosociological relevés from the Czech Republic, in order to test whether the traditionally recognized associations with small geographical ranges are reflected in numerical classification. In various comparisons, the groups of relevés identified by numerical analysis occupied larger areas than the traditional associations. This suggests that with consistent use of total species composition as the vegetation classification criterion, the resulting classification will usually include more vegetation units with larger geographical ranges, while many of the traditional local associations will disappear.  相似文献   
132.

Background and Aims

Functional traits are indicators of plant interactions with their environment and the resource-use strategies of species can be defined through some key functional traits. The importance of genetic variability and phenotypic plasticity in trait variations in response to a common environmental change was investigated in two subalpine species.

Methods

Two species with contrasted resource-use strategies, Dactylis glomerata and Festuca paniculata, were grown along a productivity gradient in a greenhouse experiment. Functional traits of different genotypes were measured to estimate the relative roles of phenotypic plasticity and genetic variability, and to compare their levels of phenotypic plasticity.

Key Results

Trait variability in the field for the two species is more likely to be the result of phenotypic plasticity rather than of genetic differentiation between populations. The exploitative species D. glomerata expressed an overall higher level of phenotypic plasticity compared with the conservative species F. paniculata. In addition to different amplitudes of phenotypic plasticity, the two species differed in their pattern of response for three functional traits relevant to resource use (specific leaf area, leaf dry matter content and leaf nitrogen content).

Conclusions

Functional trait variability was mainly the result of phenotypic plasticity, with the exploitative species showing greater variability. In addition to average trait values, two species with different resource-use strategies differed in their plastic responses to productivity.  相似文献   
133.
Grassland systems constitute a significant portion of the land area in the United States and as a result harbors significant arthropod biodiversity. During this time of biodiversity loss around the world, bioinventories of ecologically important habitats serve as important indicators for the effectiveness of conservation efforts. We conducted a bioinventory of the foliar, soil, and dung arthropod communities in 10 cattle pastures located in the southeastern United States during the 2018 grazing season. In sum, 126,251 arthropod specimens were collected. From the foliar community, 13 arthropod orders were observed, with the greatest species richness found in Hymenoptera, Diptera, and Hemiptera. The soil‐dwelling arthropod community contained 18 orders. The three orders comprising the highest species richness were Coleoptera, Diptera, and Hymenoptera. Lastly, 12 arthropod orders were collected from cattle dung, with the greatest species richness found in Coleoptera, Diptera, and Hymenoptera. Herbivores were the most abundant functional guild found in the foliar community, and predators were most abundant in the soil and dung communities. Arthropod pests constituted a small portion of the pasture arthropod communities, with 1.01%, 0.34%, and 0.46% pests found in the foliar, soil, and dung communities, respectively. While bioinventories demand considerable time, energy, and resources to accomplish, the information from these inventories has many uses for conservation efforts, land management recommendations, and the direction of climate change science.  相似文献   
134.
Aim To investigate large‐scale patterns of above‐ground and below‐ground biomass partitioning in grassland ecosystems and to test the isometric theory at the community level. Location Northern China, in diverse grassland types spanning temperate grasslands in arid and semi‐arid regions to alpine grasslands on the Tibetan Plateau. Methods We investigated above‐ground and below‐ground biomass in China's grasslands by conducting five consecutive sampling campaigns across the northern part of the country during 2001–05. We then documented the root : shoot ratio (R/S) and its relationship with climatic factors for China's grasslands. We further explored relationships between above‐ground and below‐ground biomass across different grassland types. Results Our results indicated that the overall R/S of China's grasslands was larger than the global average (6.3 vs. 3.7). The R/S for China's grasslands did not show any significant trend with either mean annual temperature or mean annual precipitation. Above‐ground biomass was nearly proportional to below‐ground biomass with a scaling exponent (the slope of log–log linear relationship between above‐ground and below‐ground biomass) of 1.02 across various grassland types. The slope did not differ significantly between temperate and alpine grasslands or between steppe and meadow. Main conclusions Our findings support the isometric theory of above‐ground and below‐ground biomass partitioning, and suggest that above‐ground biomass scales isometrically with below‐ground biomass at the community level.  相似文献   
135.
In Western Europe, old abandoned mining sites and quarries are often of high biodiversity and conservation value due to the presence of a number of endangered species. In the southern part of Belgium (Wallonia), many ancient quarries near the river Meuse are rather small and were abandoned from 50 to more than 100 years ago. In 2003, we collected 26 ant species by pitfall trapping in four of these quarries. In addition to common ones, several rare species, usually associated with mesomorphic to xeromorphic grasslands, were found in high numbers. Quarries undergoing forest succession were dominated by eurytopic species and by species typical of wet shadowy places, a fauna far less valuable in terms of nature conservation. Therefore, we suggest a management that halts further forest succession of open mesomorphic and xeromorphic habitat patches in these quarries. To assess and monitor the nature value of the ant fauna of these sites, we propose a so‐called habitat preference approach, wherein each species is assigned to one of the following three habitat preference categories: (1) eurytopic, (2) bound to wet shadow‐rich habitats, or (3) bound to dry open habitats. The stenotopic species of the last category are all endangered in Belgium and of high conservation value. The proportion of the total number of captured specimens included in the latter habitat preference category group is strongly reduced as scrub and tree encroachment advances. This proportion can therefore be used as a proxy to monitor the effects of management measures that prevent further forest succession.  相似文献   
136.
To examine the different effects of rain pulse size on uptake of summer rains by three dominant desert plants in field conditions of desertified grasslands on the Ordos Plateau of northwestern China, we studied relationships between precipitation event size and rainwater uptake using stable isotopes of hydrogen in plant and soil water. Four natural precipitation events that represented precipitation sizes of 5.3, 8.3, 13.3, and 65.3 mm in the summer were chosen for the experiment. The perennial grass Stipa bungeana, the shrub Artemisia ordosia, and the herb Cynanchum komarovii – the dominant species in the communities – were compared for their use of summer rains with different pulse sizes based on the changes in the hydrogen isotope ratios (δD) of their stem water 7 days following each natural rain event. We found that S. bungeana and C. komarovii took advantage of shallow water sources derived from small (< 10 mm) rain events, A. ordosia took advantage of deeper soil water recharged by large (> 65 mm) rain events, and C. komarovii relied primarily on rain events of intermediate (10–20 mm) size. These different responses to rain pulses among species suggested that more frequent small rain events will promote the dominance of S. bungeana and C. komarovii, medium-sized events will facilitate development of C. komarovii, and large events will advance A. ordosia in this community. The rainwater utilization patterns of the three species would allow the coexistence of S. bungeana and A. ordosia or the coexistence of A. ordosia and C. komorovii in various successional serals following the disturbances. With an increase in variability of summer rain pulse size as predicted by climate change models, we expect that the structure of this community will undergo significant change in the future. Altered precipitation regimes, especially in combination with anthropogenic-related disturbances such as over-grazing, are likely to accelerate rates of degradation in northwestern China.  相似文献   
137.
Soil respiration (RSOIL) is the second largest carbon flux between terrestrial systems and the atmosphere, with a magnitude 10 times greater than anthropogenic carbon dioxide production. Therefore, it is important that we understand, and be able to predict, how RSOIL responds to climate change. Although a positive, significant temperature effect on RSOIL has long been recognized, recent studies emphasize the overriding importance of current photosynthesis in controlling RSOIL. We tested the hypothesis that model inclusion of intra-annual variations in aboveground net primary productivity (ANPP) significantly improves RSOIL estimates over predictions based on soil temperature alone. We also evaluated the possibility that canopy production is less directly linked to RSOIL, by testing the hypothesis that intersite differences in RSOIL correlate more strongly with root biomass than with ANPP. We tested these hypotheses by measuring RSOIL, ANPP, and root biomass at four Iowa grasslands that differed in aboveground growth phenology and productivity. Among all sites, intra-annual variations in RSOIL were most strongly related to soil temperature (R 2 = 0.89), not ANPP (R 2 = 0.53). All sites responded identically to changes in soil temperature (site-by-temperature P = 0.53), but inconsistently to variation in aboveground dynamics (site-by-canopy P < 0.0001). Incorporating canopy dynamics into temperature-based predictive models improved model R 2 by a maximum of 0.01. Among-site differences in RSOIL were related to root biomass (P < 0.001) but not ANPP (P = 0.34). We found no useful linkage between canopy characteristics and intra-annual or site-specific RSOIL predictions, perhaps because shoot and root dynamics were not consistently linked through time or among sites.  相似文献   
138.
Aim The C4 and crassulacean acid metabolism (CAM) pathways are adaptations to compensate for high rates of photorespiration and water and carbon deficiency. This is the first attempt to compare the relative abundance of C3 vs. C4 + CAM species in temperate and subtropical grasslands across a latitudinal gradient in central Argentina. We predict that under the same rainfall regime, C4 + CAM plants will have larger soil coverage in highly saline soils than in neighbouring non‐saline ones. Location Data were taken from three phytogeographical provinces in the Santa Fe province of Argentina: Chaquenian, Pampean and Espinal. Methods The salinity of the soil was estimated through aqueous solution conductivity. The proportions of species belonging to C3/C4 + CAM photosynthetic pathways were compared among halophyte and non‐halophyte communities with a χ2 homogeneity test. The sum of cover percentages corresponding to the C3 and C4 + CAM photosynthetic pathways were calculated and compared using analysis of variance (ANOVA). Results The soil conductivity values were higher in the halophyte than in the non‐halophyte communities for the same phytogeographical area. The C4 + CAM plants had much higher soil coverage values in halophyte than in non‐halophyte communities in the Pampean and Espinal phytogeographical provinces. The differences were not statistically significant in the Chaquenian province. Main conclusions Soil drought provoked by soil salinity results in a much higher soil cover by C4 + CAM plants in regions with positive to neutral water balance (i.e. Pampean and Espinal). This differential abundance pattern in C4 + CAM functional group is not observed in areas where a pronounced water deficit exists per se (Chaquenian region), and therefore C4 + CAM plants predominate in all environments regardless of soil salinity. Our results suggest that one of the main environmental forces driving the upsurge of C4 species in Argentinean grasslands might have been the strong local soil salinity gradient.  相似文献   
139.
Mosier  A.R.  Morgan  J.A.  King  J.Y.  LeCain  D.  Milchunas  D.G. 《Plant and Soil》2002,240(2):201-211
In late March 1997, an open-top-chamber (OTC) CO2 enrichment study was begun in the Colorado shortgrass steppe. The main objectives of the study were to determine the effect of elevated CO2 (720 mol mol–1) on plant production, photosynthesis, and water use of this mixed C3/C4 plant community, soil nitrogen (N) and carbon (C) cycling and the impact of changes induced by CO2 on trace gas exchange. From this study, we report here our weekly measurements of CO2, CH4, NOx and N2O fluxes within control (unchambered), ambient CO2 and elevated CO2 OTCs. Soil water and temperature were measured at each flux measurement time from early April 1997, year round, through October 2000. Even though both C3 and C4 plant biomass increased under elevated CO2 and soil moisture content was typically higher than under ambient CO2 conditions, none of the trace gas fluxes were significantly altered by CO2 enrichment. Over the 43 month period of observation NOx and N2O flux averaged 4.3 and 1.7 in ambient and 4.1 and 1.7 g N m–2 hr –1 in elevated CO2 OTCs, respectively. NOx flux was negatively correlated to plant biomass production. Methane oxidation rates averaged –31 and –34 g C m–2 hr–1 and ecosystem respiration averaged 43 and 44 mg C m–2 hr–1 under ambient and elevated CO2, respectively, over the same time period.  相似文献   
140.
Scullion  J.  Eason  W.R.  Scott  E.P. 《Plant and Soil》1998,204(2):243-254
The effectivity of arbuscular mycorrhizal spores in promoting growth of Allium ameloprasum L. cv. Musselburgh and Trifolium repens L. cv. Menna was tested for inocula from three soil series under long term organic or intensive, conventional grass and grass-arable rotations. For two soil series, Allium responses to inocula from soils recently converted to organic fanning were also assessed. Finally, Trifolium root fragments were used to inoculate Allium so as to evaluate responses to this inoculation procedure. Plants were sown into previously sterilised, matched soils from organic farms with no nutrient input. Mycorrhizal treatments generally increased growth for Allium. However, for Trifolium, infection decreased growth in the most fertile soil and gave an increase only in the least fertile. In the least fertile soil, inocula from organic farms were more effective than those from conventional farms. For Trifolium (all soils) and for Allium (least fertile soil), there was evidence of more efficient uptake of phosphorus in plants inoculated with spores from organic farms. The pattern of Allium response to inoculation with spores from conventional, conversion and organic sources was not consistent between soil type, but there was evidence of lower root infection for conversion compared with organic inocula and of a trend towards higher infectivity as the time period under organic management increased. Inoculating Allium with AMF root fragments produced a plant response similar to that obtained when spores were used, confirming that spore viability was not the sole factor influencing AMF effectivity in earlier experiments. Intensive farming practices may reduce the effectiveness of indigenous arbuscular mycorrhizal populations, particularly where fertiliser inputs are high and inherent fertility is low. This could have practical implications where high input farms are converted to organic management.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号