首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   945篇
  免费   24篇
  国内免费   28篇
  2023年   5篇
  2022年   11篇
  2021年   8篇
  2020年   8篇
  2019年   17篇
  2018年   23篇
  2017年   18篇
  2016年   9篇
  2015年   16篇
  2014年   32篇
  2013年   97篇
  2012年   21篇
  2011年   42篇
  2010年   29篇
  2009年   45篇
  2008年   46篇
  2007年   36篇
  2006年   36篇
  2005年   51篇
  2004年   33篇
  2003年   32篇
  2002年   36篇
  2001年   27篇
  2000年   16篇
  1999年   20篇
  1998年   13篇
  1997年   19篇
  1996年   15篇
  1995年   22篇
  1994年   16篇
  1993年   28篇
  1992年   13篇
  1991年   10篇
  1990年   11篇
  1989年   14篇
  1988年   19篇
  1987年   11篇
  1986年   13篇
  1985年   9篇
  1984年   15篇
  1983年   9篇
  1982年   9篇
  1981年   5篇
  1980年   8篇
  1978年   6篇
  1977年   4篇
  1975年   3篇
  1974年   2篇
  1972年   2篇
  1971年   2篇
排序方式: 共有997条查询结果,搜索用时 31 毫秒
31.
32.
Metabolism of vanillic acid, a product of lignin degradation, has been studied in selected representatives of soft-rot, brown-rot and white-rot fungi. All of the brown-and white-rot species examined decarboxylated vanillate to methoxyhydroquinone oxidatively. Mycelium extracts of all these fungi, except Pleurotus ostreatus contained high levels of an NAD(P)H-dependent vanillate hydroxylase. P. ostreatus also released 14CO2 from 14COOH-vanillate but by a different mechanism possibly involving phenoloxidases. Most of these fungi also contained a dioxygenase which catalysed the intra-diol cleavage of hydroxyquinol (1,2,4-trihydroxybenzene) to form maleylacetate. No 3-O-demethylase activity was detected, and data indicate that in some of the fungi examined cleavage of the aromatic ring occurs without prior removal of the methoxyl group. None of the soft-rot fungi tested contained vanillate hydroxylase or hydroxyquinol 1,2-dioxygenase, but very low levels of protocatechuate 3,4-dioxygenase were detected in mycelium extracts. Vanillate catabolism among members of this group occurs via a different route which may involve ring demethylation although no 3-O-demethylase activity was detected in this study. The enzyme NAD(P)H-quinone oxidoreductase was demonstrated to exist in all the studied groups of fungi.  相似文献   
33.
A typical system comprising xanthine-xanthine oxidase, which produces superoxide free radicals, significantly increased endogenous levels of the senescence-associated lipoxygenase enzyme while cytokinin reversed this effect. It is suggested that in its interaction with free radicals cytokinin may have a dual effect: a) it may inhibit purine oxidation by the formation of a 2,8 dihydroxy purine which lowers the substrate affinity of xanthine oxidase; b) it may act as a direct free radical scavenger by virtue of H abstraction from the α-carbon atom in the amine bond.  相似文献   
34.
35.
Abstract

To elucidate roles of the intestine in uric acid (UA) metabolism, we examined ABCG2 expression, tissue UA content and xanthine oxidoreductase (XOR) activity in different intestinal segments. Male SD rats were assigned to control group or oxonic acid-induced hyperuricemia (HUA) group. In control rats, ABCG2 was present both in villi and crypts in each segment. Tissue UA content and XOR activity were relatively high in duodenum and jejunum. However, in HUA rats, tissue UA content was significantly elevated in the ileum, whereas it remained unaltered in other segments. Moreover, ABCG2 expression in the HUA group was upregulated both in the villi and crypts of the ileum. These data indicate that the ileum may play an important role in the extra-renal UA excretion.  相似文献   
36.
《Free radical research》2013,47(2):77-82
Intact rat lenses incubated with lumazine and xanthine oxidase are physiologically damaged as evidenced by a decrease in the net accumulation of rubidium ions against a concentration gradient. Superoxide dismutase protected the tissue against this damage. These experiments, therefore, demonstrate the susceptibility of the lens tissue to O2?? injury under ambient and nonphotochemical conditions, suggesting a possible implication of this radical in the tissue in vivo and eventual cataract formation. The lumazine/xanthine oxidase system which is known to cause oxygen reduction predominantly by the monovalent route, producing superoxide, appears quite suitable to evaluate the toxicity of O2?? to the tissues in vitro.  相似文献   
37.
《Free radical research》2013,47(4-6):401-415
The chemical and enzymatic pathways of vitamin K1 epoxide and quinone reduction have been investigated. The reduction of the epoxide by thiols is known to involve a thiol-adduct and a hydroxy vitamin K enolate intermediate which eliminates water to yield the quinone. Sodium borohydride treatment resulted in carbonyl reduction generating relatively stable compounds that did not proceed to quinone in the presence of base. NAD(P)H:quinone oxidoreductase (DT-diaphorase. E.C. I.6.99.2) reduction of vitamin K to the hydroquinone was a significant process in intact microsomes. but 1/5th the rate of the dithiothreitol (DTT)-dependent reduction. No evidence was found for DT-diaphorase catalyzed reduction of vitamin K1 epoxide, nor was it capable of mediating transfer of electrons from NADH to the microsomal epoxide reducing enzyme. Purified diaphorase reduced detergent- solubilized vitamin K, 10?5 as rapidly as it reduced dichlorophenylindophenol(DCPIP). Reduction of 10 μM vitamin K, by200 μM NADH was not inhibited by 10μM dicoumarol. whereas DCPIP reduction was fully inhibited. In contrast to vitamin K, (menadione). vitamin K1 (phylloquinone) did not stimulate microsomal NADPH consumption in the presence or absence of dicoumarol. DTT-dependent vitamin K epoxide reduction and vitamin K reduction were shown to be mutually inhibitory reactions. suggesting that both occur at the same enzymatic site. On this basis, a mechanism for reduction of the quinone by thiols is proposed. Both the DTT-dependent reduction of vitamin K1 epoxide and quinone. and the reduction of DCPIP by purified DT-diaphorase were inhibited by dicoumarol, warfarin. lapachol. and sulphaquinoxaline  相似文献   
38.
《Free radical research》2013,47(1-5):69-78
The massive leakage of intracellular enzymes which occurs during reoxygenation of heart tissue after hypoxic or ischemic episodes has been suggested to result from the formation of oxygen radicals. One purported source of such radicals is the xanthine oxidase-mediated metabolism of hypoxanthine and xanthine. Xanthine oxidase (O form) has been suggested to be formed in vivo by limited proteolysis of xanthine dehydrogenase (D form) during the hypoxic period (Granger el ai. Gastroenterology 81, 22 (1981)). We measured the activities of xanthine oxidase in both fresh and isolated-perfused (Langendorff) rat heart tissue. Approximately 32% of the total xanthine oxidase was in the O form in fresh and isolated-perfused rat heart. This value was unchanged following 60min of hypoxia and 30 minutes of reoxygenation. The infusion of 250/JM allopurinol throughout the perfusion completely inhibited xanthine oxidase activity but had no effect on the massive release of lactate dehydrogenase (LDH) into the coronary effluent upon reoxygenation of heart tissue subjected to 30 or 60min of hypoxia. Protection from 30min of hypoxia was also not obtained when rats were pretreated for 48 h with allopurinol at a dose of 30mg/kg/day and perfused with allopurinol containing medium. Superoxide dismutase (50 units/ml), catalase (200 units/ml), or the antioxidant cyanidanol (100μM) also had no effect on LDH release upon reoxygenation after 60 min of hypoxia. Xanthine oxidase activity was detected in a preparation enriched in cardiac endothelial cells while no allupurinol-inhibitable activity could be measured in purified isolated cardiomyocytes. It is concluded that xanthine dehydrogenase is not converted to xanthine oxidase in hypoxic tissue of the isolated perfused rat heart, and that the release of intracellular enzymes upon reoxygenation in this experimental model is mediated by factors other than reactive oxygen generated by xanthine oxidase.  相似文献   
39.
In this study we investigated the superoxide radicals scavenging effect and xanthine oxidase inhibitory activity by magnesium lithospermate B, which was originally isolated from the roots of Salvia miltiorrhiza (also named Danshen or Dansham), an important herb in Oriental medicine. Superoxide radicals were generated both in β-NADH/PMS system and xanthine/ xanthine oxidase system. Magnesium lithospermate B significantly inhibited the reduction of NBT induced by superoxide radicals with an IC50 of 29.8 μg/mL and 4.06 μg/mL respectively in the two systems. Further study suggested that magnesium lithospermate B can directly inhibit xanthine oxidase and exhibits competitive inhibition. Magnesium lithospermate B was also found to have the hypouricemic activity in vivo against potassium oxonate-induced hyperuricaemia in mice. After oral administration of magnesium lithospermate B at doses of 10, 20 and 30 mg/kg, there was a significant decrease in the serum urate level when compared to the hyperuricemia control. In addition, magnesium lithospermate B significantly protected HL-60 cells from superoxide radicals-induced apoptosis in the xanthine/ xanthine oxidase reactions. This study provided evidence that magnesium lithospermate B exhibits direct superoxide radicals scavenging and xanthine oxidase inhibitory activity.  相似文献   
40.
Flavonoids are an important group of natural compounds that can interfere with the activity of some enzymes. In this study, effects of various flavonoids on aldehyde oxidase (AO) activity were evaluated in vitro. AO was partially purified from guinea pig liver. The effects of 12 flavonoids from three subclasses of flavon-3-ol, flavan-3-ol and flavanone on the oxidation of vanillin and phenanthridine as substrates of AO and xanthine as a substrate of xanthine oxidase (XO) were investigated spectrophotometrically. Among the 12 flavonoids, myricetin and quercetin were the most potent inhibitors of both AO and XO. In general, the oxidation of vanillin was more inhibited by flavonoids than that of phenanthridine. Almost all of the flavonoids inhibited AO activity more potently than XO, which was more evident with non-planner flavanols. A planner structure seems to be essential for a potent inhibitory effect and any substitution by sugar moieties reduces the inhibitory effects. This study could provide a new insight into AO natural inhibitors with potential to lead to some food-drug interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号