首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   945篇
  免费   24篇
  国内免费   28篇
  2023年   5篇
  2022年   11篇
  2021年   8篇
  2020年   8篇
  2019年   17篇
  2018年   23篇
  2017年   18篇
  2016年   9篇
  2015年   16篇
  2014年   32篇
  2013年   97篇
  2012年   21篇
  2011年   42篇
  2010年   29篇
  2009年   45篇
  2008年   46篇
  2007年   36篇
  2006年   36篇
  2005年   51篇
  2004年   33篇
  2003年   32篇
  2002年   36篇
  2001年   27篇
  2000年   16篇
  1999年   20篇
  1998年   13篇
  1997年   19篇
  1996年   15篇
  1995年   22篇
  1994年   16篇
  1993年   28篇
  1992年   13篇
  1991年   10篇
  1990年   11篇
  1989年   14篇
  1988年   19篇
  1987年   11篇
  1986年   13篇
  1985年   9篇
  1984年   15篇
  1983年   9篇
  1982年   9篇
  1981年   5篇
  1980年   8篇
  1978年   6篇
  1977年   4篇
  1975年   3篇
  1974年   2篇
  1972年   2篇
  1971年   2篇
排序方式: 共有997条查询结果,搜索用时 250 毫秒
161.
White fecal strands of Birgus latro are composed of small spherules of uric acid with a mean diameter of 1.6 ± 0.6 μm. Large numbers of membrane‐bound spherules with concentric lamellae are present in the R cells of the midgut gland, so we suggest that lengths of white feces are produced by coordinated secretion of these spherules into the lumen of the midgut gland tubules. There are four cell types in the tubules with embryonic (E) cells at the distal tip, B cells in a narrow band at the distal end and R cells making up the bulk of the tubules and gland. F cells are sparsely scattered among the R cells. Midgut gland tissue was assayed for activities of xanthine dehydrogenase and xanthine oxidase, the two forms of xanthine oxidoreductase. Contrary to previous reports, we found that the midgut gland of B. latro contains only high activities of xanthine dehydrogenase. If proteinase inhibitors were omitted from the assays, however, significant activity of xanthine oxidase was measured, a result we regard as an artifact attributable to the partial conversion of xanthine dehydrogenase to xanthine oxidase by endogenous proteinases. R cells were demonstrated to contain peroxisomes, which may be involved in lipid metabolism rather than synthesis of uric acid. J. Morphol. 241:227–235, 1999 © 1999 Wiley‐Liss, Inc.  相似文献   
162.
163.
Pyrogallol (PG) is a polyphenol compound and a known O2 generator. We evaluated the effects of PG on the growth and apoptosis of human pulmonary adenocarcinoma Calu-6 cells. PG decreased the viability of Calu-6 cells in a dose- and time-dependent manner. The induction of apoptosis by PG was accompanied by the loss of mitochondrial membrane potential (ΔΨm), cytochrome c release from mitochondria and activation of caspase-3 and caspase-8. All tested caspase inhibitors, especially the pan-caspase inhibitor (Z-VAD), markedly rescued Calu-6 cells from PG-induced cell death. Rescue was accompanied by inhibition of caspase-3 activation and PARP cleavage. Treatment with Z-VAD also prevented the loss of mitochondrial membrane potential (ΔΨm). In conclusion, PG inhibits the growth of Calu-6 cells via caspase-dependent apoptosis.  相似文献   
164.
165.
Electron transfer proteins and redox enzymes containing paramagnetic redox centers with different relaxation rates are widespread in nature. Despite both the long distances and chemical paths connecting these centers, they can present weak magnetic couplings produced by spin-spin interactions such as dipolar and isotropic exchange. We present here a theoretical model based on the Bloch-Wangsness-Redfield theory to analyze the dependence with temperature of EPR spectra of interacting pairs of spin 1/2 centers having different relaxation rates, as is the case of the molybdenum-containing enzyme aldehyde oxidoreductase from Desulfovibrio gigas. We analyze the changes of the EPR spectra of the slow relaxing center (Mo(V)) induced by the faster relaxing center (FeS center). At high temperatures, when the relaxation time T1 of the fast relaxing center is very short, the magnetic coupling between centers is averaged to zero. Conversely, at low temperatures when T1 is longer, no modulation of the coupling between metal centers can be detected.  相似文献   
166.
The high plasticity of the active-site cavity of cytochromes P450, permitting reactivity toward a vast array of compounds, makes these enzymes attractive targets for biotechnological application. Escalating attention in this area is driven by remarkable progress in the rational design by DNA shuffling of self-sufficient, multi-domain P450/electron donor constructs simplifying the composition of biocatalytic systems. Moreover, versatile approaches were undertaken to supersede the well-established, NAD(P)H-steered proteinaceous redox chains by cost-effective alternative electron transfer conduits constituted of organometallic mediators or photoactivatable redox triggers. Electrochemical techniques have proven particularly useful: employing different types of carbon- and metal-based electrodes for the fabrication of biosensors, the continuing challenge was to optimize the conductive properties of these devices by creating biocompatible interfaces for transferring electrons between sensor surfaces and redox proteins. The present review provides a critical update of the most significant breakthroughs in innovative manipulation of the redox machinery, giving an impulse to exploitation of P450s in fields such as the production of fine chemicals, drug processing, medicinal diagnostics and remediation of biotopes contaminated with harmful environmental pollutants.  相似文献   
167.
It was shown that IgGs purified from the sera of healthy Wistar rats contain several different bound Me2+ ions and oxidize 3,3'-diaminobenzidine through a H2O2-dependent peroxidase and H2O2-independent oxidoreductase activity. IgGs have lost these activities after removing the internal metal ions by dialysis against EDTA. External Cu2+ or Fe2+ activated significantly both activities of non-dialysed IgGs containing different internal metals (Fe > or = Pb > or = Zn > or = Cu > or = Al > or = Ca > or = Ni > or = Mn > Co > or = Mg) showing pronounced biphasic dependencies corresponding to approximately 0.1-2 and approximately 2-5 mM of Me2+, while the curves for Mn2+ were nearly linear. Cu2+ alone significantly stimulated both the peroxidase and oxidoreductase activities of dialysed IgGs only at high concentration (> or = 2 mM), while Mn2+ weakly activated peroxidase activity at concentration >3 mM but was active in the oxidoreductase oxidation at a low concentration (<1 mM). Fe2+-dependent peroxidase activity of dialysed IgGs was observed at 0.1-5 mM, but Fe2+ was completely inactive in the oxidoreductase reaction. Mg2+, Ca2+, Zn2+, Al2+ and especially Co2+ and Ni2+ were not able to activate dialysed IgGs, but slightly activated non-dialysed IgGs. The use of the combinations of Cu2+ + Mn2+, Cu2+ + Zn2+, Fe2+ + Mn2+, Fe2+ + Zn2+ led to a conversion of the biphasic curves to hyperbolic ones and in parallel to a significant increase in the activity as compared with Cu2+, Fe2+ or Mn2+ ions taken separately; the rates of the oxidation reactions, catalysed by non-dialysed and dialysed IgGs, became comparable. Mg2+, Co2+ and Ni2+ markedly activated the Cu2+-dependent oxidation reactions catalysed by dialysed IgGs, while Ca2+ inhibited these reactions. A possible role of the second metal in the oxidation reactions is discussed.  相似文献   
168.
Physiological roles of the two distinct chloroplast-targeted ferredoxin-NADP+ oxidoreductase (FNR) isoforms in Arabidopsis thaliana were studied using T-DNA insertion line fnr1 and RNAi line fnr2 . In fnr2 FNR1 was present both as a thylakoid membrane-bound form and as a soluble protein, whereas in fnr1 the FNR2 protein existed solely in soluble form in the stroma. The fnr2 plants resembled fnr1 in having downregulated photosynthetic properties, expressed as low chlorophyll content, low accumulation of photosynthetic thylakoid proteins and reduced carbon fixation rate when compared with wild type (WT). Under standard growth conditions the level of F0'rise' and the amplitude of the thermoluminescence afterglow (AG) band, shown to correlate with cyclic electron transfer (CET), were reduced in both fnr mutants. In contrast, when plants were grown under low temperatures, both fnr mutants showed an enhanced rate of CET when compared with the WT. These data exclude the possibility that distinct FNR isoforms feed electrons to specific CET pathways. Nevertheless, the fnr2 mutants had a distinct phenotype upon growth at low temperature. The fnr2 plants grown at low temperature were more tolerant against methyl viologen (MV)-induced cell death than fnr1 and WT. The unique tolerance of fnr2 plants grown at low temperature to oxidative stress correlated with an increased level of reduced ascorbate and reactive oxygen species (ROS) scavenging enzymes, as well as with a scarcity in the accumulation of thylakoid membrane protein complexes, as compared with fnr1 and WT. These results emphasize a critical role for FNR2 in the redistribution of electrons to various reducing pathways, upon conditions that modify the photosynthetic capacity of the plant.  相似文献   
169.
Light-independent chlorophyll (Chl) biosynthesis is a prerequisite for the assembly of photosynthetic pigment–protein complexes in the dark. Dark-grown Larix decidua Mill. seedlings synthesize Chl only in the early developmental stages and their Chl level rapidly declines during the subsequent development. Our analysis of the key regulatory steps in Chl biosynthesis revealed that etiolation of initially green dark-grown larch cotyledons is connected with decreasing content of glutamyl-tRNA reductase and reduced 5-aminolevulinic acid synthesizing capacity. The level of the Chl precursor protochlorophyllide also declined in the developing larch cotyledons. Although the genes chlL, chlN and chlB encoding subunits of the light-independent protochlorophyllide oxidoreductase were constitutively expressed in the larch seedlings, the accumulation of the ChlB subunit was developmentally regulated and ChlB content decreased in the fully developed cotyledons. The efficiency of chlB RNA-editing was also reduced in the mature dark-grown larch seedlings. In contrast to larch, dark-grown seedlings of Picea abies (L.) Karst. accumulate Chl throughout their whole development and show a different control of ChlB expression. Analysis of the plastid ultrastructure, photosynthetic proteins by Western blotting and photosynthetic parameters by gas exchange and Chl fluorescence measurements provide additional experimental proofs for differences between dark and light Chl biosynthesis in spruce and larch seedlings.  相似文献   
170.
Electron Paramagnetic Resonance (EPR) spectroscopy is the method of choice to study paramagnetic cofactors that often play an important role as active centers in electron transfer processes in biological systems. However, in many cases more than one paramagnetic species is contributing to the observed EPR spectrum, making the analysis of individual contributions difficult and in some cases impossible. With time-domain techniques it is possible to exploit differences in the relaxation behavior of different paramagnetic species to distinguish between them and separate their individual spectral contribution. Here we give an overview of the use of pulsed EPR spectroscopy to study the iron-sulfur clusters of NADH:ubiquinone oxidoreductase (complex I). While FeS cluster N1 can be studied individually at a temperature of 30 K, this is not possible for FeS cluster N2 due to its severe spectral overlap with cluster N1. In this case Relaxation Filtered Hyperfine (REFINE) spectroscopy can be used to separate the overlapping spectra based on differences in their relaxation behavior.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号