首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1969篇
  免费   271篇
  国内免费   14篇
  2024年   1篇
  2023年   22篇
  2022年   75篇
  2021年   71篇
  2020年   71篇
  2019年   84篇
  2018年   85篇
  2017年   45篇
  2016年   60篇
  2015年   114篇
  2014年   97篇
  2013年   88篇
  2012年   41篇
  2011年   105篇
  2010年   87篇
  2009年   107篇
  2008年   84篇
  2007年   113篇
  2006年   100篇
  2005年   110篇
  2004年   109篇
  2003年   98篇
  2002年   71篇
  2001年   27篇
  2000年   24篇
  1999年   39篇
  1998年   47篇
  1997年   69篇
  1996年   28篇
  1995年   49篇
  1994年   33篇
  1993年   18篇
  1992年   19篇
  1991年   8篇
  1990年   9篇
  1989年   4篇
  1988年   9篇
  1987年   6篇
  1986年   1篇
  1985年   8篇
  1984年   6篇
  1983年   1篇
  1982年   3篇
  1981年   4篇
  1980年   2篇
  1979年   2篇
排序方式: 共有2254条查询结果,搜索用时 31 毫秒
81.
Bioassay-directed fractionation of the leaf and root extracts of the antiproliferative Madagascar plant Stuhlmannia moavi afforded 6-acetyl-5,8-dihydroxy-2-methoxy-7-methyl-1,4-naphthoquinone (stuhlmoavin, 1) as the most active compound, with an IC50 value of 8.1 μM against the A2780 human ovarian cancer cell line, as well as the known homoisoflavonoid bonducellin (2) and the stilbenoids 3,4,5′-trihydroxy-3′-methoxy-trans-stilbene (3), piceatannol (4), resveratrol (5), rhapontigenin (6), and isorhapontigenin (7). The structure elucidation of all compounds was based on NMR and mass spectroscopic data, and the structure of 1 was confirmed by a single crystal X-ray analysis. Compounds 2?5 showed weak A2780 activities, with IC50 values of 10.6, 54.0, 41.0, and 74.0 μM, respectively. Compounds 1?3 also showed weak antimalarial activity against Plasmodium falciparum with IC50 values of 23, 26, and 27 μM, respectively.  相似文献   
82.
Anopheles gambiae mosquitoes that transmit malaria are attracted to humans by the odor molecules that emanate from skin and sweat. Odorant binding proteins (OBPs) are the first component of the olfactory apparatus to interact with odorant molecules, and so present potential targets for preventing transmission of malaria by disrupting the normal olfactory responses of the insect. AgamOBP20 is one of a limited subset of OBPs that it is preferentially expressed in female mosquitoes and its expression is regulated by blood feeding and by the day/night light cycles that correlate with blood‐feeding behavior. Analysis of AgamOBP20 in solution reveals that the apo‐protein exhibits significant conformational heterogeneity but the binding of odorant molecules results in a significant conformational change, which is accompanied by a reduction in the conformational flexibility present in the protein. Crystal structures of the free and bound states reveal a novel pathway for entrance and exit of odorant molecules into the central‐binding pocket, and that the conformational changes associated with ligand binding are a result of rigid body domain motions in α‐helices 1, 4, and 5, which act as lids to the binding pocket. These structures provide new insights into the specific residues involved in the conformational adaptation to different odorants and have important implications in the selection and development of reagents targeted at disrupting normal OBP function.  相似文献   
83.
Thirty five years ago mesotrypsin was first isolated from the human pancreas. It was described as a minor trypsin isoform with the remarkable property of near total resistance to biological trypsin inhibitors. Another unusual feature of mesotrypsin was discovered later, when it was found that mesotrypsin has defective affinity toward many protein substrates of other trypsins. As the younger sibling of the two major trypsins secreted by the pancreas, cationic and the anionic trypsin, it has been speculated to represent an evolutionary waste with no apparent function. We know now that mesotrypsin is functionally very different from the other trypsins, with novel substrate specificity that hints at distinct physiological functions. Recently, evidence has begun to emerge implicating mesotrypsin in direct involvement in cancer progression. This review will explore the biochemical characteristics of mesotrypsin and structural insights into its specificity, function, and inhibition.  相似文献   
84.
85.
Vacuolar ATPases (V‐ATPases) are essential proton pumps that acidify the lumen of subcellular organelles in all eukaryotic cells and the extracellular space in some tissues. V‐ATPase activity is regulated by a unique mechanism referred to as reversible disassembly, wherein the soluble catalytic sector, V1, is released from the membrane and its MgATPase activity silenced. The crystal structure of yeast V1 presented here shows that activity silencing involves a large conformational change of subunit H, with its C‐terminal domain rotating ~150° from a position near the membrane in holo V‐ATPase to a position at the bottom of V1 near an open catalytic site. Together with biochemical data, the structure supports a mechanistic model wherein subunit H inhibits ATPase activity by stabilizing an open catalytic site that results in tight binding of inhibitory ADP at another site.  相似文献   
86.
Herein we report an in vitro kinetic evaluation against the most relevant human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms (I, II, IX and XII) of a small series of lactate dehydrogenase (LDH, EC 1.1.1.27) inhibitors. All compounds contain a primary sulfonamide zinc-binding group (ZBG) substituted with the 2-thio-6-oxo-1,6-dihydropyrimidine scaffold. By means of X-ray crystallographic experiments we explored the ligand–enzyme binding modes, thus highlighting the contribution of the 2-thio-6-oxo-1,6-dihydropyrimidine moiety to the stabilization of the complex.  相似文献   
87.
As we know more about Zika virus(ZIKV), as well as its linkage to birth defects(microcephaly) and autoimmune neurological syndromes, we realize the importance of developing an efficient vaccine against it. Zika virus disease has affected many countries and is becoming a major public health concern. To deal with the infection of ZIKV, plenty of experiments have been done on selection of neutralizing antibodies that can target the envelope(E) protein on the surface of the virion. However, the existence of antibody-dependent enhancement(ADE) effect might limit the use of them as therapeutic candidates. In this review, we classify the neutralizing antibodies against ZIKV based on the epitopes and summarize the resolved structural information on antibody/antigen complex from X-ray crystallography and cryo-electron microscopy(cryo-EM), which might be useful for further development of potent neutralizing antibodies and vaccines toward clinical use.  相似文献   
88.
89.
Translocation of virulence effector proteins through the type III secretion system (T3SS) is essential for the virulence of many medically relevant Gram‐negative bacteria. The T3SS ATPases are conserved components that specifically recognize chaperone–effector complexes and energize effector secretion through the system. It is thought that functional T3SS ATPases assemble into a cylindrical structure maintained by their N‐terminal domains. Using size‐exclusion chromatography coupled to multi‐angle light scattering and native mass spectrometry, we show that in the absence of the N‐terminal oligomerization domain the Salmonella T3SS ATPase InvC can form monomers and dimers in solution. We also present for the first time a 2.05 å resolution crystal structure of InvC lacking the oligomerization domain (InvCΔ79) and map the amino acids suggested for ATPase intersubunit interaction, binding to other T3SS proteins and chaperone–effector recognition. Furthermore, we validate the InvC ATP‐binding site by co‐crystallization of InvCΔ79 with ATPγS (2.65 å) and ADP (2.80 å). Upon ATP‐analogue recognition, these structures reveal remodeling of the ATP‐binding site and conformational changes of two loops located outside of the catalytic site. Both loops face the central pore of the predicted InvC cylinder and are essential for the function of the T3SS ATPase. Our results present a fine functional and structural correlation of InvC and provide further details of the homo‐oligomerization process and ATP‐dependent conformational changes underlying the T3SS ATPase activity.  相似文献   
90.
Bacillithiol is a glucosamine‐derived antioxidant found in several pathogenic Gram‐positive bacteria. The compound is involved in maintaining the appropriate redox state within the cell as well as detoxifying foreign agents like the antibiotic fosfomycin. Bacillithiol is produced via the action of three enzymes, including BshA, a retaining GT‐B glycosyltransferase that utilizes UDP‐N‐acetylglucosamine and l ‐malate to produce N‐acetylglucosaminyl‐malate. Recent studies suggest that retaining GT‐B glycosyltransferases like BshA utilize a substrate‐assisted mechanism that goes through an SNi‐like transition state. In a previous study, we relied on X‐ray crystallography as well as computational simulations to hypothesize the manner in which substrates would bind the enzyme, but several questions about substrate binding and the role of one of the amino acid residues persisted. Another study demonstrated that BshA might be subject to feedback inhibition by bacillithiol, but this phenomenon was not analyzed further to determine the exact mechanism of inhibition. Here we present X‐ray crystallographic structures and steady‐state kinetics results that help elucidate both of these issues. Our ligand‐bound crystal structures demonstrate that the active site provides an appropriate steric and geometric arrangement of ligands to facilitate the substrate‐assisted mechanism. Finally, we show that bacillithiol is competitive for UDP‐N‐acetylglucosamine with a Ki value near 120–130 μM and likely binds within the BshA active site, suggesting that bacillithiol modulates BshA activity via feedback inhibition. The work presented here furthers our understanding of bacillithiol metabolism and can aid in the development of inhibitors to counteract resistance to antibiotics such as fosfomycin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号