首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1974篇
  免费   271篇
  国内免费   14篇
  2024年   1篇
  2023年   23篇
  2022年   79篇
  2021年   71篇
  2020年   71篇
  2019年   84篇
  2018年   85篇
  2017年   45篇
  2016年   60篇
  2015年   114篇
  2014年   97篇
  2013年   88篇
  2012年   41篇
  2011年   105篇
  2010年   87篇
  2009年   107篇
  2008年   84篇
  2007年   113篇
  2006年   100篇
  2005年   110篇
  2004年   109篇
  2003年   98篇
  2002年   71篇
  2001年   27篇
  2000年   24篇
  1999年   39篇
  1998年   47篇
  1997年   69篇
  1996年   28篇
  1995年   49篇
  1994年   33篇
  1993年   18篇
  1992年   19篇
  1991年   8篇
  1990年   9篇
  1989年   4篇
  1988年   9篇
  1987年   6篇
  1986年   1篇
  1985年   8篇
  1984年   6篇
  1983年   1篇
  1982年   3篇
  1981年   4篇
  1980年   2篇
  1979年   2篇
排序方式: 共有2259条查询结果,搜索用时 562 毫秒
71.
Botulinum neurotoxin (BoNT), the causative agent of the deadly neuroparalytic disease botulism, is the most poisonous protein known for humans. Produced by different strains of the anaerobic bacterium Clostridium botulinum, BoNT effects cellular intoxication via a multistep mechanism executed by the three modules of the activated protein. Endocytosis, the first step of cellular intoxication, is triggered by the ∼50 kDa, heavy-chain receptor-binding domain (HCR) that is specific for a ganglioside and a protein receptor on neuronal cell surfaces. This dual receptor recognition mechanism between BoNT and the host cell's membrane is well documented and occurs via specific intermolecular interactions with the C-terminal sub-domain, Hcc, of BoNT–HCR. The N-terminal sub-domain of BoNT–HCR, Hcn, comprises ∼50% of BoNT–HCR and adopts a β-sheet jelly roll fold. While suspected in assisting cell surface recognition, no unambiguous function for the Hcn sub-domain in BoNT has been identified. To obtain insights into the potential function of the Hcn sub-domain in BoNT, the first crystal structure of a BoNT with an organic ligand bound to the Hcn sub-domain has been obtained. Here, we describe the crystal structure of BoNT/CD–HCR determined at 1.70 Å resolution with a tetraethylene glycol (PG4) moiety bound in a hydrophobic cleft between β-strands in the β-sheet jelly roll fold of the Hcn sub-domain. The PG4 moiety is completely engulfed in the cleft, making numerous hydrophilic (Y932, S959, W966, and D1042) and hydrophobic (S935, W977, L979, N1013, and I1066) contacts with the protein's side chain and backbone that may mimic in vivo interactions with the phospholipid membranes on neuronal cell surfaces. A sulfate ion was also observed bound to residues T1176, D1177, K1196, and R1243 in the Hcc sub-domain of BoNT/CD–HCR. In the crystal structure of a similar protein, BoNT/D–HCR, a sialic acid molecule was observed bound to the equivalent residues suggesting that residues T1176, D1177, K1196, and R1243 in BoNT/CD may play a role in ganglioside binding.  相似文献   
72.
Abstract

The formation and stability of structural elements in two 5S rRNA molecules from wheat germ (WG) and lupin seeds (LS) as a function of Mg2+ concentration in solution was determined using the adiabatic differential scanning microcalorimetry (DSC). The experimentally determined thermodynamic parameters are compared with calculations using thermodynamic databases used for prediction of RNA structure. The 5S rRNA molecules which show minor differences in the nucleotide sequence display very different thermal unfolding profiles (DSC profiles). Numerical deconvolution of DSC profiles provided information about structural transformations that take place in both 5S rRNA molecules. A comparative analysis of DSC data and the theoretical thermodynamic models of the structure was used to establish a relationship between the constituting transitions found in the melting profiles and the unfolding of structural domains of the 5S rRNA and stability of its particular helical elements.

Increased concentration of Mg2+ ions induces additional internal interactions stabilising 5S rRNA structures found at low Na+ concentrations. Observed conformational transitions suggest a structural model in which the extension of helical region E dominates over the postulated tertiary interaction between hairpin loops. We propose that helix E is stabilised by a sequence of non-standard pairings extending this helix by the formation of tetra loop e and an almost total reduction of loop d between helices E and D. Two hairpin structures in both 5S rRNA molecules: the extended C-C' and the extended E-E'-E” hairpins appear as the most stable elements of the structure. The cooperativity of the unfolding of helixes in these 5S rRNA molecules changes already at 2 mM Mg2+.  相似文献   
73.
Enzymes synthesizing the bacterial CP (capsular polysaccharide) are attractive antimicrobial targets. However, we lack critical information about the structure and mechanism of many of them. In an effort to reduce that gap, we have determined three different crystal structures of the enzyme CapE of the human pathogen Staphylococcus aureus. The structure reveals that CapE is a member of the SDR (short-chain dehydrogenase/reductase) super-family of proteins. CapE assembles in a hexameric complex stabilized by three major contact surfaces between protein subunits. Turnover of substrate and/or coenzyme induces major conformational changes at the contact interface between protein subunits, and a displacement of the substrate-binding domain with respect to the Rossmann domain. A novel dynamic element that we called the latch is essential for remodelling of the protein–protein interface. Structural and primary sequence alignment identifies a group of SDR proteins involved in polysaccharide synthesis that share the two salient features of CapE: the mobile loop (latch) and a distinctive catalytic site (MxxxK). The relevance of these structural elements was evaluated by site-directed mutagenesis.  相似文献   
74.

Sulfate-reducing bacteria (SRB) play a major role in the precipitation of metal sulfides in the environment. In this work, biogenic copper sulfide formation was examined in cultures of SRB and compared to chemically initiated Cu sulfide precipitation as a reference system. Mixed cultures of SRB were incubated at 22, 45, and 60°C in nutrient solutions that contained copper sulfate. Abiotic reference samples were produced by reacting uninoculated liquid media with Na2S solutions under otherwise identical conditions. Precipitates were collected anaerobically by centrifugation, frozen in liquid N2, and freeze-dried, followed by analysis using X-ray diffraction (XRD), X-ray fluorescence, and scanning electron microscopy. Covellite (CuS) was the only mineral found in the precipitates. Covellite was less crystalline in the biogenic precipitates than in the abiotic samples based on XRD peak widths and peak to background ratios. Poor crystallinity may be the result of slower precipitation rates in bacterial cultures as compared to the abiotic reference systems. Furthermore, bacterial cells may inhibit the nucleation steps that lead to crystal formation. Incubation at elevated temperatures improved the crystallinity of the biotic specimens.  相似文献   
75.
BtpA/Btp1/TcpB is a virulence factor produced by Brucella species that possesses a Toll interleukin-1 receptor (TIR) domain. Once delivered into the host cell, BtpA interacts with MyD88 to interfere with TLR signalling and modulates microtubule dynamics. Here the crystal structure of the BtpA TIR domain at 3.15 Å is presented. The structure shows a dimeric arrangement of a canonical TIR domain, similar to the Paracoccus denitrificans Tir protein but secured by a unique long N-terminal α-tail that packs against the TIR:TIR dimer. Structure-based mutations and multi-angle light scattering experiments characterized the BtpA dimer conformation in solution. The structure of BtpA will help with studies to understand the mechanisms involved in its interactions with MyD88 and with microtubules.  相似文献   
76.
The high resolution crystal structure of 5-(2-thienylacetamido)-1,3,4-thiadiazole-2-sulfonamide complexed to human (h) carbonic anhydrase (CA, EC 4.2.1.1) isoform hCA II is reported. The compound binds in a similar manner with acetazolamide when the sulfamoyl–thiadiazolyl–acetamido fragment of the two compounds is considered, but the thienyl tail was positioned in the subpocket 2, rarely observed by other investigated CA inhibitors. This positioning allows interaction with amino acid residues (such as Asn67, Ile91, Gln92 and Val121 which are variable in other isoforms of medicinal chemistry interest, such as hCA I, IX and XII. Indeed, the investigated sulfonamide was a medium potency hCA I and II inhibitor but was highly effective as a hCA IX and XII inhibitor. This different behavior with respect to acetazolamide (a promiscuous inhibitor of all these isoforms) has been explained by resolving the crystal structure, and may be used to design more isoform-selective compounds.  相似文献   
77.
The crystal structure of 4-phenylacetamidomethyl-benzenesulfonamide (4ITP) bound to human carbonic anhydrase (hCA, EC 4.2.1.1) II is reported. 4ITP is a medium potency hCA I and II inhibitor (KIs of 54–75 nM), a strong mitochondrial CA VA/VB inhibitor (KIs of 8.3–8.6 nM) and a weak transmembrane CA inhibitor (KIs of 136–212 nM against hCA IX and XII). This elongated compound binds in an extended conformation to hCA II, with its tail lying towards the hydrophobic half of the active site whereas the sulfonamide moiety coordinates the zinc ion. The present structure was compared to that of structurally related aromatic sulfonamides, such as 4-phenylacetamido-benzene-sulfonamide (3OYS), 4-(2-mercaptophenylacetamido)-benzene-sulfonamide (2HD6) and 4-(3-nitrophenyl)-ureido-benzenesulfonamide (3N2P). Homology models of the hCA I, VA, VB, IX and XII structures were build which afforded an understanding of the amino acids involved in the binding of these compounds to these isoforms. The main conclusion of the study is that the orientation of the tail moiety and the presence of flexible linkers as well polar groups in it, strongly influence the potency and the selectivity of the sulfonamides for the inhibition of cytosolic, mitochondrial or transmembrane CA isoforms.  相似文献   
78.
Bioassay-directed fractionation of the leaf and root extracts of the antiproliferative Madagascar plant Stuhlmannia moavi afforded 6-acetyl-5,8-dihydroxy-2-methoxy-7-methyl-1,4-naphthoquinone (stuhlmoavin, 1) as the most active compound, with an IC50 value of 8.1 μM against the A2780 human ovarian cancer cell line, as well as the known homoisoflavonoid bonducellin (2) and the stilbenoids 3,4,5′-trihydroxy-3′-methoxy-trans-stilbene (3), piceatannol (4), resveratrol (5), rhapontigenin (6), and isorhapontigenin (7). The structure elucidation of all compounds was based on NMR and mass spectroscopic data, and the structure of 1 was confirmed by a single crystal X-ray analysis. Compounds 2?5 showed weak A2780 activities, with IC50 values of 10.6, 54.0, 41.0, and 74.0 μM, respectively. Compounds 1?3 also showed weak antimalarial activity against Plasmodium falciparum with IC50 values of 23, 26, and 27 μM, respectively.  相似文献   
79.
Anopheles gambiae mosquitoes that transmit malaria are attracted to humans by the odor molecules that emanate from skin and sweat. Odorant binding proteins (OBPs) are the first component of the olfactory apparatus to interact with odorant molecules, and so present potential targets for preventing transmission of malaria by disrupting the normal olfactory responses of the insect. AgamOBP20 is one of a limited subset of OBPs that it is preferentially expressed in female mosquitoes and its expression is regulated by blood feeding and by the day/night light cycles that correlate with blood‐feeding behavior. Analysis of AgamOBP20 in solution reveals that the apo‐protein exhibits significant conformational heterogeneity but the binding of odorant molecules results in a significant conformational change, which is accompanied by a reduction in the conformational flexibility present in the protein. Crystal structures of the free and bound states reveal a novel pathway for entrance and exit of odorant molecules into the central‐binding pocket, and that the conformational changes associated with ligand binding are a result of rigid body domain motions in α‐helices 1, 4, and 5, which act as lids to the binding pocket. These structures provide new insights into the specific residues involved in the conformational adaptation to different odorants and have important implications in the selection and development of reagents targeted at disrupting normal OBP function.  相似文献   
80.
Thirty five years ago mesotrypsin was first isolated from the human pancreas. It was described as a minor trypsin isoform with the remarkable property of near total resistance to biological trypsin inhibitors. Another unusual feature of mesotrypsin was discovered later, when it was found that mesotrypsin has defective affinity toward many protein substrates of other trypsins. As the younger sibling of the two major trypsins secreted by the pancreas, cationic and the anionic trypsin, it has been speculated to represent an evolutionary waste with no apparent function. We know now that mesotrypsin is functionally very different from the other trypsins, with novel substrate specificity that hints at distinct physiological functions. Recently, evidence has begun to emerge implicating mesotrypsin in direct involvement in cancer progression. This review will explore the biochemical characteristics of mesotrypsin and structural insights into its specificity, function, and inhibition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号