首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   726篇
  免费   91篇
  国内免费   141篇
  2024年   6篇
  2023年   23篇
  2022年   25篇
  2021年   42篇
  2020年   30篇
  2019年   56篇
  2018年   39篇
  2017年   26篇
  2016年   43篇
  2015年   40篇
  2014年   31篇
  2013年   42篇
  2012年   28篇
  2011年   29篇
  2010年   21篇
  2009年   42篇
  2008年   34篇
  2007年   36篇
  2006年   48篇
  2005年   32篇
  2004年   25篇
  2003年   28篇
  2002年   25篇
  2001年   22篇
  2000年   15篇
  1999年   24篇
  1998年   16篇
  1997年   12篇
  1996年   13篇
  1995年   13篇
  1994年   13篇
  1993年   8篇
  1992年   9篇
  1991年   7篇
  1990年   4篇
  1989年   8篇
  1988年   4篇
  1987年   7篇
  1986年   7篇
  1985年   3篇
  1984年   5篇
  1983年   2篇
  1982年   5篇
  1981年   7篇
  1979年   1篇
  1978年   2篇
排序方式: 共有958条查询结果,搜索用时 375 毫秒
71.
Migratory shorebirds need to replenish their energy reserves by foraging at stop-over sites en route. Adjusting their foraging behaviour to accommodate variation in local prey availability would therefore be advantageous. We test whether western sandpipers (Calidris mauri), a sexually dimorphic shorebird, adjust their foraging behaviour in response to local changes in prey availability, as inferred by changes in diurnal time and sediment temperature. Both males and females showed quantitative changes to foraging mode in relation to each of these variables. Probing, for example, which is used to exploit infaunal prey, was significantly more common at higher temperatures. The results presented here are consistent with the notion that western sandpipers can adjust their foraging behaviour in response to variation in prey availability. Further, we speculate that temperature-induced changes to prey location may contribute to the striking sexual segregation observed for this species during the non-breeding season.  相似文献   
72.
Response of wetland plant species to hydrologic conditions   总被引:1,自引:0,他引:1  
Understanding hydrologic requirements of native and introduced species is critical to sustaining native plant communities in wetlands of disturbed landscapes. We examined plant assemblages, and 31 of the most common species comprising them, from emergent wetlands in an urbanizing area of the Pacific Northwest, USA, in relation to in situ, fine-scale hydrology. Percent cover by plant species was estimated in 2208 1-m2 plots across 43 sites, with water depth at time of vegetation sampling measured in 432 plots. Three years of bi-weekly hydrologic data from each of the 43 sites were used to estimate mean surface water level and mean absolute difference (MAD) in surface water level for every plot. Nine assemblages of plant species that co-occur in the field were identified using TWINSPAN. The assemblage richest in native species occurred under intermediate hydrologic conditions and was bracketed by pasture grass dominated assemblages at drier conditions with low water level variability, and Phalaris arundinacea L. assemblages with higher mean water levels and variability. Results suggest minor changes in average water levels (10 cm) or in variability (±2 cm in MAD) could promote a shift from assemblages dominated by natives to those dominated by invasive or alien taxa. Canonical correspondence analysis segregated the species into four groups related to hydrologic gradients. Each species response group was typified by taxa with similar optima for a given environmental variable, with each group related to a characteristic suite of hydrologic conditions. The most common species (P. arundinacea, Juncus effusus L., and Typha latifolia L.), each representing a different response group, exhibited unique responses in occurrence/abundance in relation to water level variability, but were abundant over a wide range of water depth. The realized niches of other species in each response group were more restricted, with peaks in cover confined to narrower ranges of water depth and variability.  相似文献   
73.
Imbalanced biomass allocation patterns in emergent aquatic plants to above and below-ground structures as a response to climatic variations and water depth were investigated on the basis of observation of three stable homogeneous populations established under different water regimes and climatic environments in Goulburn and Ourimbah, New South Wales, Australia, from August 2003 to December 2004. The growth of shoots depended on water inundation-drawdown patterns and climatic variations. Shoot density was greater in shallow water but with shorter shoot length and less maximum above-ground biomass density than for plant stands in deep water. Deep-water populations attained higher below-ground biomass with higher above to below-ground biomass ratio than for the shallow-water population. Translocation of carbohydrate reserves between above and below-ground organs in deep-water populations were mostly downward throughout the year whereas the depletion–recharge pattern varied seasonally in shallow water populations. Shoots of deep-water populations grew year-round whereas in shallow water shoots died off after recession of the water level with no re-growth afterward, showing that Eleocharis sphacelata is better adapted to deep water and is stressed under shallow-water conditions. A mathematical model was formulated to describe the growth patterns of E. sphacelata and subsequently to predict the effect of water depth on production. Model simulations are in satisfactory agreement with observed patterns of growth. The model also predicts that maximum production decreases sharply with increasing water depth.  相似文献   
74.
Zhang X Y  Chen L D  Fu B J  Li Q  Qi X  Ma Y 《农业工程》2006,26(10):3198-3203
The effects of agricultural land use and management practices on soil organic carbon (SOC) are of great concern. In this study, SOC changes were investigated in sandy loam soils (Ustochrepts, USDA Soil Taxonomy) under orchard, vegetable, corn (Zea maize L.), and soybean (Glycine max L.) cultivation in northern China. The corn fields were further classified into three categories based on their inputs, i.e. high-input, mid-input, and low-input corn fields. In April 2005, a total of 197 soil samples were collected from 42 soil sites within 100 cm soil depth in Yanhuai Basin, Beijing, China. SOC contents were determined using rapid dichromate oxidation, and ANOVA statistical analysis was used to test the significances between land use and management practices at p<0.05. The results showed that: (1) the effects of land use and management practices on SOC primarily occurred within the topsoil (0–25 cm), and the SOC contents sharply decreased with the increase in soil depth. (2) SOC content and density values of orchard, vegetable, and high-input corn fields were higher than those of soybean, mid- and low-input corn fields.  相似文献   
75.
This work presents and recommends 1) an empirically based new model quantifying the relationship between salinity, suspended particulate matter (SPM) and water clarity (as given by the Secchi depth) and (2) an empirical model for oxygen saturation in the deep-water zone for coastal areas (O2Sat in %). This paper also discusses the many and important roles that SPM plays in aquatic ecosystems and presents comparisons between SPM concentrations in lakes, rivers and coastal areas. Such comparative studies are very informative but not so common. The empirical O2Sat model explains (statistically) 80% of the variability in mean O2Sat values among 23 Baltic coastal areas. The model is based on data on sedimentation of SPM, the percentage of ET areas (areas where erosion and transportation of fine sediments occur), the theoretical deep-water retention time and the mean coastal depth. These two new models have been incorporated into an existing dynamic model for SPM in coastal areas that quantifies all important fluxes of SPM into, within and from coastal areas, such as river inflow, primary production, resuspension, sedimentation, mixing, mineralisation and the SPM exchange between the given coastal area and the sea (or adjacent coastal areas). The modified dynamic SPM model with these two new sub-models has been validated (blind tested) with very good results; the model predictions for Secchi depth, O2Sat and sedimentation are within the uncertainty bands of the empirical data.  相似文献   
76.
We measured root and stem mass at three sites (Piedmont (P), Coastal Plain (C), and Sandhills (S)) in the southeastern United States. Stand density, soil texture and drainage, genetic makeup and environmental conditions varied with site while differences in tree size at each site were induced with fertilizer additions. Across sites, root mass was about one half of stem mass when estimated on a per hectare basis. Stem mass per hectare explained 91% of the variation in root mass per hectare, while mean tree diameter at breast height (D), site, and site by measurement year were significant variables explaining an additional 6% of the variation in root mass per hectare. At the S site, the root:stem ratio decreased from 0.7 to 0.5 when mean tree D increased from 10 to 22 cm. At the P and C sites, where mean root:stem ratios were 0.40 and 0.47, respectively, no significant slope in the root:stem to mean tree D relationship was found over a more narrow range in mean tree D (12–15 and 12–18 cm, respectively). Roots were observed in the deepest layers measured (190, 190, and 290 cm for the P, C, and S sites, respectively); however, the asymptotically decreasing root mass per layer indicated the bulk of roots were measured. Root growth relative to stem growth would need to change with increased mean tree D to explain the results observed here. While these changes in growth rate among plant components may differ across sites, stem mass alone does a good job of estimating root mass across sites.  相似文献   
77.
The precise molecular mechanisms by which cells transduce a mechanical stimulus into an intracellular biochemical response have not yet been established. Here, we show for the first time that the fluorescence emission of an environment-sensitive membrane probe Laurdan is modulated by mechanical strain of the lipid bilayer membrane. We have measured fluorescence emission of Laurdan in phospholipid vesicles of 30, 50, and 100 nm diameter to show that osmotically induced membrane tension leads to an increase in polarity (hydration depth) of the phospholipid bilayer interior. Our data indicate that the general polarization of Laurdan emission is linearly dependent on membrane tension. We also show that higher membrane curvature leads to higher hydration levels. We anticipate that the proposed method will facilitate future studies of mechanically induced changes in physical properties of lipid bilayer environment both in vitro and in vivo.  相似文献   
78.
Recovery of therapeutic protein from high cell density yeast fermentations at commercial scale is a challenging task. In this study, we investigate and compare three different harvest approaches, namely centrifugation followed by depth filtration, centrifugation followed by filter-aid enhanced depth filtration, and microfiltration. This is achieved by presenting a case study involving recovery of a therapeutic protein from Pichia pastoris fermentation broth. The focus of this study is on performance of the depth filtration and the microfiltration steps. The experimental data has been fitted to the conventional models for cake filtration to evaluate specific cake resistance and cake compressibility. In the case of microfiltration, the experimental data agrees well with flux predicted by shear induced diffusion model. It is shown that, under optimal conditions, all three options can deliver the desired product recovery ( >80%), harvest time ( <15 h including sequential concentration/diafiltration step), and clarification ( <6 NTU). However, the three options differ in terms of process development time required, capital cost, consumable cost, ease of scale-ability and process robustness. It is recommended that these be kept under consideration when making a final decision on a harvesting approach.  相似文献   
79.
Predation by red imported fire ants, Solenopsis invicta on oriental fruit fly, Bactrocera dorsalis puparia was evaluated. No significant olfactory response of the workers was observed at 0, 2 and 4 days after fly pupation, whereas the workers were significantly attracted by the 6th day old puparia. We found S. invicta that predated on puparia of B. dorsalis in the field. The predation rate was negatively correlated with the depth of puparia in the soil. The predation rate was 70% at 4 cm depth; whereas, zero predation rate was observed at 6 cm depth. The predation rate was also significantly affected by soil moisture. The predation rate was 66.5% and 72.1% at soil moisture values of 40% and 80%, respectively, and no predation occurred at soil moisture value of 0%.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号