首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   727篇
  免费   92篇
  国内免费   142篇
  961篇
  2024年   6篇
  2023年   23篇
  2022年   27篇
  2021年   42篇
  2020年   31篇
  2019年   56篇
  2018年   39篇
  2017年   26篇
  2016年   43篇
  2015年   40篇
  2014年   31篇
  2013年   42篇
  2012年   28篇
  2011年   29篇
  2010年   21篇
  2009年   42篇
  2008年   34篇
  2007年   36篇
  2006年   48篇
  2005年   32篇
  2004年   25篇
  2003年   28篇
  2002年   25篇
  2001年   22篇
  2000年   15篇
  1999年   24篇
  1998年   16篇
  1997年   12篇
  1996年   13篇
  1995年   13篇
  1994年   13篇
  1993年   8篇
  1992年   9篇
  1991年   7篇
  1990年   4篇
  1989年   8篇
  1988年   4篇
  1987年   7篇
  1986年   7篇
  1985年   3篇
  1984年   5篇
  1983年   2篇
  1982年   5篇
  1981年   7篇
  1979年   1篇
  1978年   2篇
排序方式: 共有961条查询结果,搜索用时 15 毫秒
1.
The distribution patterns of the leathery sea anemone, Heteractis crispa, which contains an algal endosymbiont (zooxanthellae) and anemonefish, were investigated in relation to size distribution on a shallow fringing reef (3.2 ha, 0–4 m depth) in Okinawa, Japan. Individual growth and movements were also examined. Large individuals (>1,000 cm2) inhabited reef edges up to a depth of 4 m, while small anemone (<500 cm2) inhabited shallow reefs including inner reef flats. Individuals rarely moved, and their sizes were significantly correlated with their water depths. Growth of small anemones was negatively correlated with their distance from the reef edge, suggesting that reef edges provide more prey and lower levels of physiological stress. This study suggested that deep reef edges are suitable habitats for H. crispa. Large anemones were inhabited by large Amphiprion perideraion or large Amphiprion clarkii, both of which are effective defenders against anemone predators. Anemones that settle in deep reef edges may enjoy a higher survival rate and attain a large size because of their symbiotic relationship with anemonefish. However, early settlers do not harbor anemonefish. Their mortality rate would be higher in the deep edges than in shallow edges, the complicated topography of which provides refuge.  相似文献   
2.
Trap sampling over reefs in deep (mean = 20 m) and shallow (mean = 10 m) waters along c. 1500 km of coastline in tropical north‐western Australia during both day and night and in wet and dry periods yielded 23 377 fishes, representing 32 families, 58 genera and 119 species. Individuals of the Serranidae, Lutjanidae, Lethrinidae and Carangidae contributed 88·9% to the total catch. The ichthyofaunal compositions of the Kimberley, Canning and Pilbara bioregions were relatively discrete. Species composition was influenced far more by location (latitude) than by water depth, period and time of day, and underwent a gradational change southwards. The latter change reflected differences in the trends exhibited by the relative abundances of certain species with increasing latitude and the confinement of other species largely to particular regions. The three most abundant species, i.e. Lethrinus sp. 3, Lutjanus carponotatus and Lethrinus laticaudis contributed 34·8, 20·8 and 11·6% to the total catch, respectively. The first species was rarely recorded in the two most northern locations and was abundant in the four most southern locations, whereas the last two species were relatively more abundant in northern than in southern locations. Lutjanus bitaeniatus and Lutjanus johnii were found exclusively at the two locations in the Kimberley region, whereas Abalistes stellatus, Pentapodus emeryii and Lethrinus nebulosus were not caught in this region but were found in both locations of the Canning and Pilbara regions. The species composition in deep and shallow waters at each location almost invariably differed significantly between day and night and between dry and wet periods, with species such as L. bitaeniatus, L. johnii, Lutjanus sebae and A. stellatus being more abundant over deep reefs, whereas L. carponotatus, L. laticaudis, Siganus fuscescens and Lethrinus lentjan were more numerous over shallow reefs. Species such as L. johnii and Lethrinus atkinsoni were relatively more important in night‐time than daytime catches, whereas the reverse applied to Lethrinus lentjan, L. laticaudis and Choerodon cyanodus. Lethrinus sp. 3 and L. laticaudis were relatively more important in catches during the dry than wet period.  相似文献   
3.
Results of trawl catches show that in the summer period, in the waters of Primorsky Krai, Russia, Sea of Japan, the purplegray sculpin Gymnocanthus detrisus occurs at depths of 20 to 411 m, preferring the range 80–250 m. The temperature of the species’ habitat varies from 0.8 to 8.6 ° C, and the optimal one is 1.2–2.2 °C. G. detrisus occurs at the preferred depths more frequently in the southern area—the Peter the Great Bay, which is more favorable for foraging; in the area of North Primorsky Krai it was found both at greater and lesser depths. The latter is probably determined by the more limited spreading of waters with unsuitable temperatures for the species there. The body size of the purplegray sculpin grows with depth. Juveniles avoid depths over 200 m, where inflow of low-temperature waters is recorded. G. detrisus, which inhabits waters of Primorsky Krai, is represented mainly by females; the proportion of males exceeds that of females only in the 21–27 cm size group. This may be related to the lower growth rate in males after maturation as compared to females.  相似文献   
4.
Wavefront shaping can compensate the wavefront distortions in deep tissue focusing, leading to an improved penetration depth. However, when using the backscattered signals as the feedback, unexpected compensation bias may be introduced, resulting in focusing position deviations or even no focus in the illumination focal plane. Here we investigated the reliability of wavefront shaping based on coherent optical adaptive technique in deep tissue focusing by measuring the position deviations between the foci in the illumination focal plane and the epi‐detection plane. The experimental results show that when the penetration depth reaches 150 μm in mouse brain tissue (with scattering coefficient ~22.42 mm?1) using a 488 nm laser and an objective lens with 0.75 numerical aperture, the center of the real focus will deviate out of one radius range of the Airy disk while the optimized focus in the epi‐detection plane maintained basically at the center. With the penetration depth increases, the peak to background ratio of the focus in the illumination focal plane decreases faster than that in the epi‐detection plane. The results indicate that when the penetration depth reaches 150 μm, feedback based on backscattered signals will make wavefront shaping lose its reliability, which may provide a guidance for applications of non‐invasive precise optogenetics or deep tissue optical stimulation using wavefront shaping methods. A, Intensity distribution in the epi‐detection plane and the illumination focal plane before and after correction, corresponding to brain sections with 250 and 300 μm thickness, respectively. Scale bar is 2 μm. B, Averaged focusing deviations in the epi‐detection plane (optimized) and the illumination focal plane (monitored) after compensation. The unit of the ordinate is one Airy disk diameter. Black dashed line represents one Airy disk radius. Bars represent the SE of each measurement set.   相似文献   
5.
Data from four reservoirs representative of different trophic states and with different apparent optical properties were analyzed to determine the relationship of Secchi depth to algal biomass as measured by chlorophyll a. In the eutrophic reservoir Secchi depth was determined partially by the chlorophyll a content (r2 = 0.31) but only when chlorophyll a data from bloom conditions are included. In the two mesotrophic reservoirs, Secchi depth was entirely determined by non-algal turbidity. In the oligotrophic reservoir, Secchi depth was determined neither by chlorophyll a nor non-algal turbidity and was probably determined by dissolved color. When data from the four reservoirs were pooled (N = 205), 53% of the variation in Secchi depth was explained by: SD = 2.55–0.52 ln (Turbidity) + 0.005 (Chlorophyll a). It is apparent that attempts to estimate algal biomass for trophic state classification or other management practices from Secchi depth data are inappropriate even where moderate amounts of non-algal turbidity are present.  相似文献   
6.
Colmation refers to the retention processes that can lead to the clogging of the top layer of channel sediments and decolmation refers to the resuspension of deposited fine particles. Internal colmation, clogging of the interstices directly below the armor layer, may form a thin seal that disconnects surface water from hyporheic water by inhibiting exchange processes. The settling of particles under low flow conditions can cause external colmation. Colmated channel sediments are characterized by reduced porosity and hydraulic conductivity as well as by a consolidated texture. The term ‘depth filtration’ refers to the transport and storage of fine matrix sediments in interstitial layers. Depth filtration is of significance for the transport of colloidal and fine particulate inorganic as well as organic matter within the hyporheic interstices and into the alluvial aquifer. The role of depth filtration is assessed for the content (given in mg per liter) of matrix fine particles retained in the coarse framework sediment of a gravel-bed river in Switzerland. Sediment samples were taken by freeze-coring with liquid nitrogen down to 70 cm depth and by piezometers down to 150 cm depth. Seventy-two percent of the mobile matrix fine particles were smaller than 0.1 mm and 50% were smaller than 0.03 mm. The content of fines tended to increase with depth, although higher accumulations were found at intermediate depths in sediments influenced by exfiltrating ground water. Interstitial detrital particles >90 μm showed vertical distribution patterns opposing those of total particles. These relationships revealed a differential significance of import, storage, and transport within three types of hydrological exchange zones (infiltration, horizontal advection, exfiltration) in the cross-section of the stream.  相似文献   
7.
The growth of pikeperch Sander lucioperca was studied in 41 lakes in central Finland. The backcalculated average total length of 3 year‐old pikeperch was used as an indicator of growth. The growth correlated positively with total phosphorus and water colour and negatively with lake area and depth. The reason for differences in growth may be differences in the amount of suitable food, foraging success or temperature dynamics in different lakes.  相似文献   
8.
The relative importance of seed availability, waterdepth, and soil phosphorus (P) concentrations oncattail (Typha domingensis pers.) earlyestablishment in an Everglades wetland area wasexamined using seed bank analysis and controlledexperiments. The experiments measured seed germinationand seedling growth in tanks with cattail seedaddition subjected to two P concentrations(un-enriched vs. enriched) and water depth (saturatedvs. flooded soils). A limited seed bank (223 ± 69m2) of cattail was found in the surface soil ofthe area studied. The germination of added seeds wasinhibited under flooded conditions, and only 0.6% ofthe germination was found. In contrast,under-saturated soil conditions, a maximum of 6% and15% germination was observed in P-un-enriched andP-enriched treatments, respectively. High mortality ofseedlings occurred regardless of P treatments followinga cold spell. However, P enrichment resulted inincreased seedling growth and asexual propagation.These results suggested the importance of theconcurrence of appropriate hydrologic regimes, Penrichment, and air temperature on the recruitment ofplant species.  相似文献   
9.
荒漠绿洲过渡带在维护绿洲生态安全和绿洲稳定上具有重要作用。垦荒等土地利用的增强使得荒漠绿洲过渡带的健康稳定受到了巨大的挑战。以塔克拉玛干沙漠南缘典型荒漠绿洲过渡带为研究对象,系统分析了不同土地利用方式(桑田、半自然柽柳林、瓜地、棉花-玉米地)对土壤养分化学计量特征的影响。土壤取样沿农田到荒漠方向进行,分5层进行。研究发现,土壤各养分指标均受土地利用方式(4种)、土层(5层)和与农田边缘垂直距离(4梯度)的显著影响,且存在一定的交互作用。土地利用方式显著影响土壤各养分元素含量。随土层由浅到深,有机碳(C)、有效氮(N)和有效磷(P)基本呈下降趋势,全N具有波动变化,而全P变化不显著。随与农田边缘垂直距离的增加,各养分含量基本呈递减趋势。对同一土层(共选择三层)不同土地利用方式下土壤养分具体分析表明,棉花-玉米地这一利用方式在农田内部具有最高的土壤有机C和全N含量,其次为桑田。随着与农田边缘垂直距离的增加,土壤C、N含量优势减弱。除农田内部样地(0 m)外,三层土壤全P含量基本呈桑田柽柳林棉花-玉米地趋势。表层有效N含量在农田内部样地(0 m)瓜地最高,其他距离处(大于等于20 m)棉花-玉米地高,下层土壤有效氮含量在农田内部各土地利用方式间无差异。在各距离样点处不同土地利用类型间土壤有效P含量的变化无明显规律,在农田内部以瓜地有效P含量最高。棉花-玉米地土壤全量N/P在农田内部和与农田边缘垂直距离20 m处含量最高。三土层土壤有效N/P在农田内部以柽柳林最高,随着与农田边缘垂直距离增加,土壤有效N/P显著改变。综合来看,土地利用对荒漠绿洲过渡带土壤营养含量的增加具有正向作用,由土壤养分变化带来的生态效应值得关注。  相似文献   
10.
Aragüés  R.  Puy  J.  Isidoro  D. 《Plant and Soil》2004,258(1):69-80
High-density olive orchards are increasing around the world, many of which may be potentially affected by salinity and waterlogging (hypoxia), two important stresses common in irrigated fields in arid and semi-arid climates. However, the response of olive to these stresses under field conditions is not well established. Therefore, our objective was to evaluate the vegetative growth response of young olive trees (Olea europaea L., cv. Arbequina) grown in a spatially variable waterlogged, saline-sodic field. We monitored the growth in trunk diameter of 341, 3-year-old olives between September 1999 and September 2000. Field contour maps were developed delineating soil salinity (ECa), relative ground elevation (RGE) and water table depth (WTD). Soil samples were also collected and analyzed for ECe and SARe in order to characterize the salinity and sodicity profiles and develop the ECa-ECe calibration equation. The infiltration rate (IR) of the crusted and uncrusted soil and the penetration resistance (PR) were also measured. The field was characterized by spatially variable ECe (2–15 dS m–1), SARe (3–40), RGE (–4 to +4 cm) and WTD (0.5–1.9 m, with corresponding ground water EC values between 12 and 6 dS m–1). Steady-state IR of crusted soil was only 7% of the uncrusted soil. Since the field was heavily irrigated by flooding, waterlogging conditions were related to low RGE values. Soil salinity was negatively correlated (R 2 = 0.83, P<0.001) with RGE (ponded water) and WTD (upward flux), due to the evapo-concentration of water and salts at the soil surface. Thus, inverted salinity profiles developed in high salinity areas. Fifty-five percent of the olives were dead 3.5 years after planted, and most of them were located in areas of high ECe (> 10 dS m–1), low RGE (< – 1.5 cm) and low WTD (< 1.2 m). The surviving trees had vegetative salinity tolerance values of ECe threshold = 4 dS m–1 and slope = –12% (i.e., percent decline per unit increase in ECe above the treshold), indicating that the Arbequina olive is moderately tolerant to salinity. The RGE and WTD thresholds for olive's survival were > 0.1 cm and > 1.6 m, respectively. Thus, very small changes in ground elevation had a significant effect on olive's survival or death. The coupled effects of salinity and waterlogging (hypoxia) stresses were most detrimental for olive's growth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号