首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   359篇
  免费   57篇
  国内免费   28篇
  444篇
  2024年   1篇
  2023年   1篇
  2022年   3篇
  2021年   16篇
  2020年   17篇
  2019年   14篇
  2018年   20篇
  2017年   20篇
  2016年   11篇
  2015年   20篇
  2014年   17篇
  2013年   25篇
  2012年   17篇
  2011年   14篇
  2010年   18篇
  2009年   18篇
  2008年   22篇
  2007年   23篇
  2006年   15篇
  2005年   20篇
  2004年   19篇
  2003年   11篇
  2002年   12篇
  2001年   7篇
  2000年   10篇
  1999年   13篇
  1998年   10篇
  1997年   9篇
  1996年   3篇
  1995年   4篇
  1994年   3篇
  1993年   6篇
  1992年   3篇
  1991年   1篇
  1990年   4篇
  1989年   1篇
  1988年   1篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   3篇
  1979年   1篇
  1978年   3篇
排序方式: 共有444条查询结果,搜索用时 15 毫秒
11.
Banksia woodlands are renowned for their flammability and prescribed fire is increasingly employed to reduce the risk of wildfire and to protect life and property, particularly where these woodlands occur on the urban interface. Prescribed fire is also employed as a tool for protecting biodiversity assets but can have adverse impacts on native plant communities. We investigated changes in species richness and cover in native and introduced flora following autumn prescribed fire in a 700‐hectare Banksia/Tuart (Eucalyptus gomphocephala) woodland that had not burnt for more than 30 years. Effectiveness of management techniques at reducing weed cover and the impacts of grazing by Western Grey Kangaroo (Macropus fuliginosus) postfire were also investigated. Thirty plots were established across a designated burn boundary immediately before a prescribed fire in May 2011, and species richness and cover were measured 3 years after the fire, in spring of 2013. Fencing treatments were established immediately following the fire, and weed management treatments were applied annually in winter over the subsequent 3 years. Our results indicate that autumn prescribed fire can facilitate increases in weed cover, but management techniques can limit the establishment of targeted weeds postfire. Postfire grazing was found to have significant adverse impacts on native species cover and vegetation structure, but it also limited establishment of some serious weeds including Pigface (Carpobrotus edulis). Manipulating herbivores in time and space following prescribed fire could be an important and cost‐effective way of maintaining biodiversity values.  相似文献   
12.
13.
水分和磷调控的澳大利亚桉树林林下植物群落组合对二氧化碳浓度升高的响应 鉴于林下植物群落具有的关键性功能作用和全球范围内巨大的森林覆盖面积,研究林下群落对 CO2浓度升高(eCO2)的响应以及土壤资源在这些响应中的作用,对于了解CO2浓度升高对森林生态系统造成的影响非常重要。本研究评估了在澳大利亚东部磷有限的桉树林林下群落中,两种限制性的资源(即水分和磷)在发芽、物候、覆盖率、群落组成和叶片性状等方面对eCO2响应的作用。我们收集了含有当地土壤种子库的土壤,在温室条件下种植实验性的林下植物群落。研究结果表明,添加磷提高了植物的总体覆盖率,特别是在生长期的最初4 周以及水分含量高的条件下,而且该响应是由植物群落中的类禾本科植物所驱动。然而,随着实验的进行,不同处理方法之间的差异逐渐减小,所有处理在大约11周后均达到了80%左右的植物覆盖率。相反,植物覆盖率并未受到eCO2 的影响。多元分析结果反映出植物群落组成随时间的变化,盆栽从以裸土为主变为以高覆盖率的多样化群落为主。但是在实验过程中,磷的添加以及水分可利用性和CO2之间的相互作用都对植物群落随时间的变化轨迹有所影响。CO2浓度的升高也增加了群落水平的比叶面积,这表明植物群落对eCO2的功能适应可能发生在成分响应开始之前。鉴于我们用种子库培育的林下群落对eCO2 的响应随着时间的推移而有 所变化,并且受到与磷和水分可利用性的相互作用的调节。我们的结果表明,在水分含量有限的系统中, 特别是在土壤养分可利用性低所导致的生产力响应受限的情况下,CO2浓度的升高在塑造植物群落方面作用有限。  相似文献   
14.
Summary

Irish oakwoods are sparsely distributed and generally small in extent. The woodland flora is depauperate compared to Great Britain in terms of flowering plants but quite rich in Oceanic ferns, bryophytes and lichens. It includes a few distinctive species, e.g. the Mediterranean-Atlantic Arbutus unedo. Remnants of ancient woodland survive at scattered locations; they usually contain old coppice stools, or occasionally pollards. Variation in the woodland plant community reflects an edaphic gradient from strongly acid to base-rich, a hydrological gradient from well-drained to waterlogged and a climatic gradient in degree of Oceanicity. The greatest conservation problems facing Irish oak-woods are overgrazing and invasive alien species, chiefly Rhododendron ponticum; to tackle these effectively, greater public concern is required.  相似文献   
15.
African woodlands form a major part of the tropical grassy biome and support the livelihoods of millions of rural and urban people. Charcoal production in particular is a major economic activity, but its impact on other ecosystem services is little studied. To address this, our study collected biophysical and social datasets, which were combined in ecological production functions, to assess ecosystem service provision and its change under different charcoal production scenarios in Gaza Province, southern Mozambique. We found that villages with longer histories of charcoal production had experienced declines in wood suitable for charcoal, firewood and construction, and tended to have lower perceived availabilities of these services. Scenarios of future charcoal impacts indicated that firewood and woody construction services were likely to trade-off with charcoal production. However, even under the most extreme charcoal scenario, these services were not completely lost. Other provisioning services, such as wild food, medicinal plants and grass, were largely unaffected by charcoal production. To reduce the future impacts of charcoal production, producers must avoid increased intensification of charcoal extraction by avoiding the expansion of species and sizes of trees used for charcoal production. This is a major challenge to land managers and policymakers in the area.This article is part of the themed issue ‘Tropical grassy biomes: linking ecology, human use and conservation’.  相似文献   
16.
农业活动是温室气体重要的排放源,土壤碳库[土壤有机碳(SOC)和无机碳(SIC)]稍微变化会对大气CO_2产生很大影响。汉中盆地是南水北调的重要水源涵养地,在该区域秸秆还田、农田撂荒和林地是目前常见土地利用方式,但缺乏不同利用方式对SIC和SOC影响的研究。该研究采集该区域典型样地土壤,用滴定法和有机碳分析仪分别测定其SIC和SOC含量,研究3种土地利用方式对土壤碳库的影响。结果表明:SOC随土层深度最为敏感的是农田,其次是撂荒地,林地最不敏感。0~140 cm土层SOC碳密度,林地最大,是撂荒田的2.26倍,农田是撂荒田的1.37倍。深土层SOC碳密度,林地是撂荒田的2.44倍,农田是撂荒田的1.07倍。撂荒田的SIC密度最大,其次是农田,林地的SIC碳密度最低。在0~140 cm土层中,SIC密度依次为12.37、11.68和9.77 kg·m~2,撂荒田的SIC碳密度是林地的1.27倍。随着我国农村发展,土地利用管理出现新的方式,今后在估算土地利用管理方式对土壤碳影响时还需要综合考虑SOC和SIC。  相似文献   
17.
Following removal of the invasive species Rhododendron ponticum, the native understorey plant community typically fails to reestablish itself. Potential explanations for this failure include (1) lack of an appropriate native seed source; (2) inability of seed to penetrate a dense bryophyte layer; and (3) persistence of chemical “legacy effects” in the soil. We established an experiment to test these competing hypotheses in an Atlantic oak woodland where R. ponticum had been removed. The following experimental treatments were applied singly and in combination: (1) addition of a native seed mix to test for seed limitation; (2) removal of the established ground vegetation at the start of the experiment (which principally consisted of bryophytes) to test for the impact of a barrier layer; (3) addition of activated carbon to test for chemical legacy effects in the soil; and (4) fertilization as an additional measure to promote the establishment of native vascular plants. Application of the native seed mix was revealed to be an effective way to increase the cover of native vascular plants and was particularly effective when applied after the removal of the bryophyte layer. The application of activated carbon and/or fertilizer, however, had no effect on the cover of native vegetation. We conclude that reports of R. ponticum exerting chemical legacy effects long after its removal may have been overstated and that seed limitation and inability to successfully establish in a dense bryophyte layer provided the strongest barriers to natural recolonization by the native plant community following R. ponticum removal.  相似文献   
18.
19.
Guidelines for revegetation in agricultural landscapes may not address restoration of ecosystem functions because management is focused on the replanting stage, although certain functions are delivered by organisms that colonize revegetation months or years later. We investigated the ecosystem function of water infiltration to tree root zones and channels, delivered by invertebrates that form soil macropores. We measured macropore density and infiltration rates at revegetation sites established on retired grazing land, in relation to site age, tree species composition, and geographical location, compared with adjacent matched pastures. Revegetated sites had significantly more macropores than pastures, and revegetation sites aged 11–20 years had more macropores than sites aged 3–5 and 6–10 years. Tree species had a marginal effect, with more macropores in sites with Acacia spp. and Eucalyptus spp. than those with Eucalyptus spp. only. Besides ants, the main groups of soil burrowers were mygalomorph and lycosid spiders and also ground‐nesting native bees. Infiltration rates in revegetation sites aged 11–20 years were double those of pastures and of 3–5 and 6–10 year sites. This is the first study to quantify the rate of recovery of an invertebrate‐driven soil hydrological ecosystem function following revegetation.  相似文献   
20.
Aim We used a landscape‐scale study of birch invasion onto heather moorland to determine the consistency of changes in vegetation type and soil properties and in the community composition of five soil organism groups. Our aim was to determine whether the degree to which soil organisms respond to natural changes and/or induced changes (e.g. changes in land‐use type and climate) in habitat is consistent across trophic and taxonomic groups in the context of conservation policies for birch woodland and heather moorland. Location Mainland Scotland. Methods We sampled mesostigmatid mites, oribatid mites, fungi, bacteria and archaea in adjacent patches of birch woodland (dominated by Betula pubescens) and heather moorland (dominated by Calluna vulgaris) at 12 sites for which annual rainfall ranged between 713 and 2251 mm. Differences in community composition were visualized using non‐metric multidimensional scaling based on Bray–Curtis dissimilarities. The factors contributing to differences between habitats within sites were explored using general linear models and those among sites using redundancy analysis. Results The communities of all groups differed between habitats within sites, but only the oribatid mites and fungi differed consistently between habitats across sites. Within sites, dissimilarity in fungal communities was positively related to the difference in C. vulgaris cover between habitats, whereas dissimilarities in bacteria and archaea were positively related to differences in soil pH and C:N ratio between habitats, respectively. Main conclusions The influence of vegetation type and soil properties differed between groups of soil organisms, albeit in a predictable manner, across the 12 sites. Organisms directly associated with plants (fungi), and organisms with microhabitat and resource preferences (Oribatida) were strongly responsive to changes in habitat type. The response of organisms not directly associated with plants (bacteria, archaea) depended on differences in soil properties, while organisms with less clear microhabitat and resource preferences (Mesostigmata) were not strongly responsive to either vegetation type or soil properties. These results show that it is possible to predict the impact of habitat change on specific soil organisms depending on their ecology. Moreover, the community composition of all groups was related to variation in precipitation within the study area, which shows that external factors, such as those caused by climate change, can have a direct effect on belowground communities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号