首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   11篇
  国内免费   23篇
  115篇
  2023年   4篇
  2022年   2篇
  2021年   2篇
  2020年   5篇
  2019年   6篇
  2018年   4篇
  2017年   4篇
  2016年   6篇
  2015年   6篇
  2014年   4篇
  2013年   10篇
  2012年   8篇
  2011年   4篇
  2010年   4篇
  2009年   7篇
  2008年   6篇
  2007年   7篇
  2006年   9篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
排序方式: 共有115条查询结果,搜索用时 0 毫秒
111.
Weeds are alternative hosts of plant pathogens and when colonized may not exhibit disease symptoms. In 2008 and 2009, samples of weeds and plant debris were collected from 12 locations in eastern Croatia, and 300 Fusarium isolates colonizing them were identified. Strains were grouped and identified based on morphology and amplified fragment length polymorphism (AFLP) patterns. Portions of the β‐tubulin and translocation elongation factor 1‐α genes were sequenced from representative strains of each group to confirm the identifications. Fourteen Fusarium species were identified with F. graminearum (20%), F. verticillioides (18%), F. oxysporum (16%), F. subglutinans (13%) and F. proliferatum (11%) all present as more than 10% of the population. Fusarium acuminatum, F. avenaceum, F. concolor, F. crookwellense (F. cerealis), F. equiseti, F. semitectum, F. solani, F. sporotrichioides and F. venenatum, were all present at frequencies < 8%. Our results indicate that economically important Fusarium spp. may be isolated from numerous alternative hosts during the off season and that weeds and plant debris can serve as a reservoir of genetically diverse inoculum.  相似文献   
112.
Abstract: Little is known about the migration ecology of the American woodcock (Scolopax minor). From 2001 to 2003, we began a 3-year study to document woodcock fall migration routes, rates, and habitat use from Minnesota, Wisconsin, and Michigan, USA. Some 586 radiomarked woodcock initiated migration. During 224 hours of aerial telemetry, we located 42 radiomarked woodcock in 6 states. Using locations of radiomarked birds, we speculated woodcock migration routes in the central United States. Stopover duration often exceeded 4 days, with some birds stopping longer than a week. Radiomarked birds were located in upland habitats more frequently than bottomland habitats, and used a higher proportion of mature forest than expected. A Geographic Information System was used to map potential woodcock habitat in the Central Region. Based on our results, we identified possible fall migration routes and priority areas for woodcock management in the Central Region. Our results should be used by land managers to prioritize future land acquisition and management of woodcock habitat.  相似文献   
113.
Capturing shorebirds during the non‐breeding season can be challenging because they are usually scattered over wide‐open intertidal areas while foraging and are sensitive to human disturbance at roosts where they gather during high tide in large vigilant flocks. Several techniques are available for capturing shorebirds, but, for a study of stopover ecology, we needed a method that would allow us to capture Dunlins (Calidris alpina) on a regular basis at high‐tide roosts during the day (ruling out mist‐nets), did not require the use of gun‐powder (ruling out cannon‐nets), and that would deploy a net faster than clap nets, whoosh nets, and wilsternets. Therefore, we developed a new method to capture shorebirds where a crossbow is used to pull a mist‐net over flocks of roosting birds. We tested this technique in four habitats (saltpans, salt marshes, beaches, and mudflats) in the Tagus estuary, Portugal, and captured over 380 birds representing eight different species. Advantages of this technique compared to other methods (e.g., mist‐nets, clap‐ and whoosh nets, and cannon‐nets) include (1) portability, (2) ease of set up, (3) minimal disturbance of birds near the capture area, and (4) no explosive materials are needed. Our results suggest that crossbow‐netting is a safe and useful capture technique, especially for studies requiring the capture of small numbers of birds on a regular basis.  相似文献   
114.
The Mid-continent Population (MCP) of sandhill cranes (Grus canadensis) is widely hunted in North America and is separated into the Gulf Coast Subpopulation and Western Subpopulation for management purposes. Effective harvest management of the MCP requires detailed knowledge of breeding distribution of subspecies and subpopulations, chronology of their use of fall staging areas and wintering grounds, and exposure to and harvest from hunting. To address these information needs, we tagged 153 sandhill cranes with Platform Transmitting Terminals (PTTs) during 22 February–12 April 1998–2003 in the Central and North Platte River valleys of south-central Nebraska. We monitored PTT-tagged sandhill cranes, hereafter tagged cranes, from their arrival to departure from breeding grounds, during their fall migration, and throughout winter using the Argos satellite tracking system. The tracking effort yielded 74,041 useable locations over 49,350 tag days; median duration of tracking of individual cranes was 352 days and 73 cranes were tracked >12 months. Genetic sequencing of mitochondrial DNA (mtDNA) from blood samples taken from each of our random sample of tagged cranes indicated 64% were G. c. canadensis and 34% were Grus canadensis tabida. Tagged cranes during the breeding season settled in northern temperate, subarctic, and arctic North America (U.S. [23%, n = 35], Canada [57%, n = 87]) and arctic regions of northeast Asia (Russia [20%, n = 31]). Distribution of tagged cranes by breeding affiliation was as follows: Western Alaska–Siberia (WA–S, 42 ± 4% [SE]), northern Canada–Nunavut (NC–N, 21 ± 4%), west-central Canada–Alaska (WC–A, 23 ± 4%) and East-central Canada–Minnesota (EC–M, 14 ± 3%). All tagged cranes returned to the same breeding affiliation used during the previous year with a median distance of 1.60 km (range: 0.08–7.7 km, n = 53) separating sites used in year 1 and year 2. Fall staging occurred primarily in central and western Saskatchewan (69%), North Dakota (16%), southwestern Manitoba (10%), and northwestern Minnesota (3%). Space-use sharing indices showed that except for NC–N and WC–A birds, probability of finding a crane from one breeding affiliation within the home range of another breeding affiliation was low during fall staging. Tagged cranes from WC–A and EC–M breeding affiliations, on average, spent 25 and 20 days, respectively, longer on fall staging areas in the northern plains than did WA–S and NC–N birds. Cranes in the NC–N, WA–S, and WC–A affiliations spent 99%, 74%, and 64%, respectively, of winter in western Texas in Hunting Zone A; EC–M cranes spent 83% of winter along the Texas Gulf Coast in Hunting Zone C. Tagged cranes that settled within the breeding range of the Gulf Coast Subpopulation spent 28% and 42% of fall staging and winter within the range of the Western Subpopulation, indicating sufficient exchange of birds to potentially limit effectiveness of MCP harvest management. Harvests of EC–M and WC–A cranes during 1998–2003 were disproportionately high to their estimated numbers in the MCP, suggesting more conservative harvest strategies may be required for these subpopulations in the future, and for sandhill cranes to occupy major parts of their historical breeding range in the Prairie Pothole Region. Exceptionally high philopatry of MCP cranes of all 4 subpopulations to breeding sites coupled with strong linkages between crane breeding distribution, and fall staging areas and wintering grounds, provide managers guidance for targeting MCP crane harvest to meet management goals. Sufficient temporal or spatial separation exists among the 4 subpopulations on fall staging areas and wintering grounds to allow harvest to be targeted at the subpopulation level in all states and provinces (and most hunting zones within states and provinces) when conditions warrant. Knowledge gained from our study provides decision-makers in the United States, Canada, Mexico, and Russia with improved guidance for developing sound harvest regulations, focusing conservation efforts, and generating collaborative efforts among these nations on sandhill crane research and management to meet mutually important goals. © 2011 The Wildlife Society.  相似文献   
115.
The population decline of the Lesser Kestrel Falco naumanni has been the subject of studies across its Western Palaearctic breeding range, but little is known about its use of pre‐migratory areas or African wintering quarters. We used geolocators to describe the temporal and spatial patterns of Portuguese Lesser Kestrel migration and wintering behaviour. Data on the complete migration were obtained from four individuals and another three provided further information. Prior to southward migration, Lesser Kestrels showed two different behaviours: northward‐orientated movements to Spain and movements in the proximity of the breeding area. Autumn migration took place mostly in late September; spring departures occurred mainly in the first half of February. Wintering grounds included Senegal, Mauritania and Mali, with individuals overlapping considerably in Senegal. Movements registered within the wintering grounds suggest itinerant behaviour in relation to local flushes of prey. During spring migration, birds crossed the Sahara Desert through Mauritania, Western Sahara and Morocco before passing over the Mediterranean to reach Portugal. Autumn migration lasted 4.8 ± 1.1 days, and spring migration lasted 4.1 ± 0.3 days. The mean daily flight range varied between approximately 300 and 850 km for an entire journey of around 2500 km. Effective protection of roosting sites in both pre‐migratory and wintering areas and maintaining grasshopper populations in Sahelian wintering quarters appear crucial in preserving this threatened migratory raptor across its African–Eurasian flyway. There was no evidence of any deleterious effects of fitting birds with loggers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号