首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1504篇
  免费   180篇
  国内免费   160篇
  2024年   9篇
  2023年   43篇
  2022年   42篇
  2021年   57篇
  2020年   64篇
  2019年   77篇
  2018年   66篇
  2017年   71篇
  2016年   60篇
  2015年   70篇
  2014年   85篇
  2013年   112篇
  2012年   75篇
  2011年   71篇
  2010年   67篇
  2009年   55篇
  2008年   87篇
  2007年   87篇
  2006年   78篇
  2005年   55篇
  2004年   58篇
  2003年   58篇
  2002年   41篇
  2001年   35篇
  2000年   30篇
  1999年   26篇
  1998年   22篇
  1997年   18篇
  1996年   17篇
  1995年   15篇
  1994年   15篇
  1993年   16篇
  1992年   11篇
  1991年   13篇
  1990年   12篇
  1989年   12篇
  1988年   5篇
  1987年   8篇
  1986年   7篇
  1985年   9篇
  1984年   13篇
  1983年   8篇
  1982年   14篇
  1981年   6篇
  1980年   10篇
  1979年   5篇
  1978年   11篇
  1974年   4篇
  1973年   3篇
  1972年   3篇
排序方式: 共有1844条查询结果,搜索用时 914 毫秒
71.
72.
The response of morphological, histological and endocrinological development to exogenous 1-thyroxine (T4) and to water depth during metamorphosis in Atlantic halibut, Hippoglossus hippoglossus, was investigated. Exogenous T4 was given in daily doses of 0.1, 0.05 ppm or a control treatment to halibut larvae at 550 daydegrees (posthatch, premetamorphic) for 14 days. Water depths of 40 cm, 10 cm or 1.5 cm were used to rear halibut larvae from 590 daydegrees for 21 days. Halibut larvae given exogenous T4 at 0.1 ppm had accelerated eye migration relative to MH in fish given 0.05 ppm and in control fish. Pigmentation was correlated with dosage after 14 days. The volume of thyroid tissue was expressed in a dose-dependent manner and exhibited a size-dependency within each treatment. However, the follicles were atypical with reduced colloid, increased lumen and low epithelial cells even in the control group. The results indicate that T4 is a mediator in halibut metamorphosis. In the water depth experiment, only cortisol levels of larvae reared in 1.5 cm water were significantly affected after 21 days, but this was not correlated with metamorphic rate. Hormone profiles, morphological changes and size suggest the existence of a window of opportunity for metamorphosis in halibut extending from about 16 mm and tapering off about 21 mm SL. The pooled hormone profiles indicate the commencement of a hormonal cascade similar to that of other flatfishes during metamorphosis. The results indicate that growth, neural and skeletal transformation, and pigmentation are biochemically separate processes in the metamorphosis of Atlantic halibut.  相似文献   
73.
Lepsík M  Kríz Z  Havlas Z 《Proteins》2004,57(2):279-293
A subnanomolar inhibitor of human immunodeficiency virus type 1 (HIV-1) protease, designated QF34, potently inhibits the wild-type and drug-resistant enzyme. To explain its broad activity, the binding of QF34 to the wild-type HIV-1 protease is investigated by molecular dynamics simulations and compared to the binding of two inhibitors that are used clinically, saquinavir (SQV) and indinavir (IDV). Analysis of the flexibility of protease residues and inhibitor segments in the complex reveals that segments of QF34 were more mobile during the dynamics studies than the segments of SQV and IDV. The dynamics of hydrogen bonding show that QF34 forms a larger number of stable hydrogen bonds than the two inhibitors that are used clinically. Absolute binding free energies were calculated with molecular mechanics-generalized Born surface area (MM-GBSA) methodology using three protocols. The most consistent results were obtained using the single-trajectory approach, due to cancellation of errors and inadequate sampling in the separate-trajectory protocols. For all three inhibitors, energy components in favor of binding include van der Waals and electrostatic terms, whereas polar solvation and entropy terms oppose binding. Decomposition of binding energies reveals that more protease residues contribute significantly to the binding of QF34 than to the binding of SQV and IDV. Moreover, contributions from protease main chains and side chains are balanced in the case of QF34 (52:48 ratio, respectively), whereas side chain contributions prevail in both SQV and IDV (main-chain:side-chain ratios of 41:59 and 45:55, respectively). The presented results help explain the ability of QF34 to inhibit multiple resistant mutants and should be considered in the design of broad-specificity second-generation HIV-1 protease inhibitors.  相似文献   
74.
NMR spectra of ubiquitin in the presence of bicelles at a concentration of 25% w/v have been recorded under sample spinning conditions for different angles of rotation. For an axis of rotation equal to the magic angle, the (1)H/(15)N HSQC recorded without any (1)H decoupling in the indirect dimension corresponds to the classical spectrum obtained on a protein in an isotropic solution and allows the measurement of scalar J-couplings (1) J (NH). For an angle of rotation smaller than the magic angle, the bicelles orient with their normal perpendicular to the spinning axis, whereas for an angle of rotation greater than the magic angle the bicelles orient with their normal along the spinning axis. This bicelle alignment creates anisotropic conditions that give rise to the observation of residual dipolar couplings in ubiquitin. The magnitude of these dipolar couplings depends directly on the angle that the rotor makes with the main magnetic field. By changing this angle in a controlled manner, residual dipolar couplings can be either scaled up or down thus offering the possibility to study simultaneously a wide range of dipolar couplings in the same sample.  相似文献   
75.
Fluorescence correlation spectroscopy was used to measure the diffusion behavior of a mixture of DMPC or DMPC/DMPG liposomes with human serum albumin (HSA) and mesoporphyrin (MP), which was used as the fluorescent label for liposomes and HSA as well. For decomposing the fluorescence intensity autocorrelation function (ACF) into components corresponding to a liposome population, HSA and MP, we used a maximum entropy procedure that computes a distribution of diffusion times consistent with the ACF data. We found that a simple parametric non-linear fit with a discrete set of decay components did not converge to a stable parameter set. The distribution calculated with the maximum entropy method was stable and the average size of the particles calculated from the effective diffusion time was in good agreement with the data determined using the discrete-component fit.  相似文献   
76.
Over the last seven years, solid-state NMR has been widely employed to study structural and functional aspects of the nicotinic acetylcholine receptor. These studies have provided detailed structural information relating to both the ligand binding site and the transmembrane domain of the receptor. Studies of the ligand binding domain have elucidated the nature and the orientation of the pharmacophores responsible for the binding of the agonist acetylcholine within the agonist binding site. Analyses of small transmembrane fragments derived from the nicotinic acetylcholine receptor have also revealed the secondary structure and the orientation of these transmembrane domains. These experiments have expanded our understanding of the channels structural properties and are providing an insight into how they might be modulated by the surrounding lipid environment. In this article we review the advances in solid-state NMR applied to the nicotinic acetylcholine receptor and compare the results with recent electron diffraction and X-ray crystallographic studies.Presented at the Biophysical Society Meeting on Ion channels – from structure to disease held in May 2003, Rennes, France  相似文献   
77.
Ionizable groups play critical roles in biological processes. Computation of pK(a)s is complicated by model approximations and multiple conformations. Calculated and experimental pK(a)s are compared for relatively inflexible active-site side chains, to develop an empirical model for hydration entropy changes upon charge burial. The modification is found to be generally small, but large for cysteine, consistent with small molecule ionization data and with partial charge distributions in ionized and neutral forms. The hydration model predicts significant entropic contributions for ionizable residue burial, demonstrated for components in the pyruvate dehydrogenase complex. Conformational relaxation in a pH-titration is estimated with a mean-field assessment of maximal side chain solvent accessibility. All ionizable residues interact within a low protein dielectric finite difference (FD) scheme, and more flexible groups also access water-mediated Debye-Hückel (DH) interactions. The DH method tends to match overall pH-dependent stability, while FD can be more accurate for active-site groups. Tolerance for side chain rotamer packing is varied, defining access to DH interactions, and the best fit with experimental pK(a)s obtained. The new (FD/DH) method provides a fast computational framework for making the distinction between buried and solvent-accessible groups that has been qualitatively apparent from previous work, and pK(a) calculations are significantly improved for a mixed set of ionizable residues. Its effectiveness is also demonstrated with computation of the pH-dependence of electrostatic energy, recovering favorable contributions to folded state stability and, in relation to structural genomics, with substantial improvement (reduction of false positives) in active-site identification by electrostatic strain.  相似文献   
78.
Thrombin binds thrombomodulin (TM) at anion binding exosite 1, an allosteric site far from the thrombin active site. A monoclonal antibody (mAb) has been isolated that competes with TM for binding to thrombin. Complete binding kinetic and thermodynamic profiles for these two protein-protein interactions have been generated. Binding kinetics were measured by Biacore. Although both interactions have similar K(D)s, TM binding is rapid and reversible while binding of the mAb is slow and nearly irreversible. The enthalpic contribution to the DeltaG(bind) was measured by isothermal titration calorimetry and van't Hoff analysis. The contribution to the DeltaG(bind) from electrostatic steering was assessed from the dependence of the k(a) on ionic strength. Release of solvent H(2)O molecules from the interface was assessed by monitoring the decrease in amide solvent accessibility at the interface upon protein-protein binding. The mAb binding is enthalpy driven and has a slow k(d). TM binding appears to be entropy driven and has a fast k(a). The favorable entropy of the thrombin-TM interaction seems to be derived from electrostatic steering and a contribution from solvent release. The two interactions have remarkably different thermodynamic driving forces for competing reactions. The possibility that optimization of binding kinetics for a particular function may be reflected in different thermodynamic driving forces is discussed.  相似文献   
79.
We present a solvable model that predicts the folding kinetics of two-state proteins from their native structures. The model is based on conditional chain entropies. It assumes that folding processes are dominated by small-loop closure events that can be inferred from native structures. For CI2, the src SH3 domain, TNfn3, and protein L, the model reproduces two-state kinetics, and it predicts well the average Phi-values for secondary structures. The barrier to folding is the formation of predominantly local structures such as helices and hairpins, which are needed to bring nonlocal pairs of amino acids into contact.  相似文献   
80.
Polyproline II (PPII) is reported to be a dominant conformation in the unfolded state of peptides, even when no prolines are present in the sequence. Here we use isothermal titration calorimetry (ITC) to investigate the PPII bias in the unfolded state by studying the binding of the SH3 domain of SEM-5 to variants of its putative PPII peptide ligand, Sos. The experimental system is unique in that it provides direct access to the conformational entropy change of the substituted amino acids. Results indicate that the denatured ensemble can be characterized by at least two thermodynamically distinct states, the PPII conformation and an unfolded state conforming to the previously held idea of the denatured state as a random collection of conformations determined largely by hard-sphere collision. The probability of the PPII conformation in the denatured states for Ala and Gly were found to be significant, approximately 30% and approximately 10%, respectively, resulting in a dramatic reduction in the conformational entropy of folding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号