首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2132篇
  免费   260篇
  国内免费   45篇
  2024年   12篇
  2023年   46篇
  2022年   73篇
  2021年   80篇
  2020年   103篇
  2019年   141篇
  2018年   95篇
  2017年   93篇
  2016年   118篇
  2015年   139篇
  2014年   135篇
  2013年   145篇
  2012年   89篇
  2011年   110篇
  2010年   113篇
  2009年   154篇
  2008年   130篇
  2007年   137篇
  2006年   74篇
  2005年   81篇
  2004年   62篇
  2003年   64篇
  2002年   36篇
  2001年   43篇
  2000年   22篇
  1999年   27篇
  1998年   20篇
  1997年   9篇
  1996年   16篇
  1995年   15篇
  1994年   19篇
  1993年   6篇
  1992年   3篇
  1991年   4篇
  1990年   4篇
  1988年   3篇
  1987年   5篇
  1986年   1篇
  1985年   5篇
  1984年   3篇
  1982年   2篇
排序方式: 共有2437条查询结果,搜索用时 140 毫秒
61.
The uniparental inheritance (UPI) of mitochondria is thought to explain the evolution of two mating types or even true sexes with anisogametes. However, the exact role of UPI is not clearly understood. Here, we develop a new model, which considers the spread of UPI mutants within a biparental inheritance (BPI) population. Our model explicitly considers mitochondrial mutation and selection in parallel with the spread of UPI mutants and self-incompatible mating types. In line with earlier work, we find that UPI improves fitness under mitochondrial mutation accumulation, selfish conflict and mitonuclear coadaptation. However, we find that as UPI increases in the population its relative fitness advantage diminishes in a frequency-dependent manner. The fitness benefits of UPI ‘leak’ into the biparentally reproducing part of the population through successive matings, limiting the spread of UPI. Critically, while this process favours some degree of UPI, it neither leads to the establishment of linked mating types nor the collapse of multiple mating types to two. Only when two mating types exist beforehand can associated UPI mutants spread to fixation under the pressure of high mitochondrial mutation rate, large mitochondrial population size and selfish mutants. Variation in these parameters could account for the range of UPI actually observed in nature, from strict UPI in some Chlamydomonas species to BPI in yeast. We conclude that UPI of mitochondria alone is unlikely to have driven the evolution of two mating types in unicellular eukaryotes.  相似文献   
62.
Fertilization proteins of marine broadcast spawning species often show signals of positive selection. Among geographically isolated populations, positive selection within populations can lead to differences between them, and may result in reproductive isolation upon secondary contact. Here, we test for positive selection in the reproductive compatibility locus, bindin, in two populations of a sea star on either side of a phylogeographic break. We find evidence for positive selection at codon sites in both populations, which are under neutral or purifying selection in the reciprocal population. The signal of positive selection is stronger and more robust in the population where effective population size is larger and bindin diversity is greater. In addition, we find high variation in coding sequence length caused by large indels at two repetitive domains within the gene, with greater length diversity in the larger population. These findings provide evidence of population‐divergent positive selection in a fertilization compatibility locus, and suggest that sexual selection can lead to reproductive divergence between conspecific marine populations.  相似文献   
63.
Indirect interactions driven by livestock and wild herbivores are increasingly recognized as important aspects of community dynamics in savannas and rangelands. Large ungulate herbivores can both directly and indirectly impact the reproductive structures of plants, which in turn can affect the pollinators of those plants. We examined how wild herbivores and cattle each indirectly affect the abundance of a common pollinator butterfly taxon, Colotis spp., at a set of long‐term, large herbivore exclosure plots in a semiarid savanna in central Kenya. We also examined effects of herbivore exclusion on the main food plant of Colotis spp., which was also the most common flowering species in our plots: the shrub Cadaba farinosa. The study was conducted in four types of experimental plots: cattle‐only, wildlife‐only, cattle and wildlife (all large herbivores), and no large herbivores. Across all plots, Colotis spp. abundances were positively correlated with both Cadaba flower numbers (adult food resources) and total Cadaba canopy area (larval food resources). Structural equation modeling (SEM) revealed that floral resources drove the abundance of Colotis butterflies. Excluding browsing wildlife increased the abundances of both Cadaba flowers and Colotis butterflies. However, flower numbers and Colotis spp. abundances were greater in plots with cattle herbivory than in plots that excluded all large herbivores. Our results suggest that wild browsing herbivores can suppress pollinator species whereas well‐managed cattle use may benefit important pollinators and the plants that depend on them. This study documents a novel set of ecological interactions that demonstrate how both conservation and livelihood goals can be met in a working landscape with abundant wildlife and livestock.  相似文献   
64.
It has been proposed that in slow‐growing vertebrate populations survival generally has a greater influence on population growth than reproduction. Despite many studies cautioning against such generalizations for conservation, wildlife management for slow‐growing populations still often focuses on perturbing survival without careful evaluation as to whether those changes are likely or feasible. Here, we evaluate the relative importance of reproduction and survival for the conservation of two bottlenose dolphin (Tursiops cf aduncus) populations: a large, apparently stable population and a smaller one that is forecast to decline. We also assessed the feasibility and effectiveness of wildlife management objectives aimed at boosting either reproduction or survival. Consistent with other analytically based elasticity studies, survival had the greatest effect on population trajectories when altering vital rates by equal proportions. However, the findings of our alternative analytical approaches are in stark contrast to commonly used proportional sensitivity analyses and suggest that reproduction is considerably more important. We show that
65.
66.
Effective management of infectious disease relies upon understanding mechanisms of pathogen transmission. In particular, while models of disease dynamics usually assume transmission through direct contact, transmission through environmental contamination can cause different dynamics. We used Global Positioning System (GPS) collars and proximity‐sensing contact‐collars to explore opportunities for transmission of Mycobacterium bovis [causal agent of bovine tuberculosis] between cattle and badgers (Meles meles). Cattle pasture was badgers’ most preferred habitat. Nevertheless, although collared cattle spent 2914 collar‐nights in the home ranges of contact‐collared badgers, and 5380 collar‐nights in the home ranges of GPS‐collared badgers, we detected no direct contacts between the two species. Simultaneous GPS‐tracking revealed that badgers preferred land > 50 m from cattle. Very infrequent direct contact indicates that badger‐to‐cattle and cattle‐to‐badger M. bovis transmission may typically occur through contamination of the two species’ shared environment. This information should help to inform tuberculosis control by guiding both modelling and farm management.  相似文献   
67.
Although being an important conservation tool in Africa, trophy hunting is known to influence risk perception in wildlife species, thus affecting the behaviour and fitness of most targeted species. We studied the effects of trophy hunting on the flight behaviour of impala (Aepyceros melampus), greater kudu (Tragelaphus strepsiceros) and sable (Hippotragus niger) in two closed ecosystems, Cawston Ranch (hunting area) and Stanley and Livingstone Private Game Reserve (tourist area), western Zimbabwe. Using standardized field procedures, we assessed the flight behavioural responses of the three species in two seasons: non‐hunting (December–March) and hunting (April–November) between March 2013 and November 2014. We tested the effect of habitat, group size, sex, season, start distance and alert distance on flight initiation distance using linear mixed models. Habitat, group size sex and alert distance did not have any effect on flight initiation distance for the three species. The three species were more alert and displayed longer flight initiation distances in the hunting area compared with the tourist area. Flight initiation distances for the three species were higher during the hunting season for the hunting area and low during the non‐hunting season. Flight distances of the three species did not differ between the hunting area and the tourist area. We concluded that trophy hunting increased perceived risk of wild ungulates in closed hunting areas, whereas ungulates in non‐hunting areas are less responsive and somehow habituated to human presence. Management plans should include minimum approach distances by tourists as well as establishing seasonal restrictions on special zones to promote species viability. Research aimed at integrating behavioural responses with physiological aspects of target species should be promoted to ensure that managers are able to deal with the behavioural trade‐offs of trophy hunting at local and regional scale.  相似文献   
68.
Demographic buffering allows populations to persist by compensating for fluctuations in vital rates, including disease‐induced mortality. Using long‐term data on a badger (Meles meles Linnaeus, 1758) population naturally infected with Mycobacterium bovis, we built an integrated population model to quantify impacts of disease, density and environmental drivers on survival and recruitment. Badgers exhibit a slow life‐history strategy, having high rates of adult survival with low variance, and low but variable rates of recruitment. Recruitment exhibited strong negative density‐dependence, but was not influenced by disease, while adult survival was density independent but declined with increasing prevalence of diseased individuals. Given that reproductive success is not depressed by disease prevalence, density‐dependent recruitment of cubs is likely to compensate for disease‐induced mortality. This combination of slow life history and compensatory recruitment promotes the persistence of a naturally infected badger population and helps to explain the badger's role as a persistent reservoir of M. bovis.  相似文献   
69.
Through dishonest signals or actions, individuals often misinform others to their own benefit. We review recent literature to explore the evolutionary and ecological conditions for deception to be more likely to evolve and be maintained. We identify four conditions: (1) high misinformation potential through perceptual constraints of perceiver; (2) costs and benefits of responding to deception; (3) asymmetric power relationships between individuals and (4) exploitation of common goods. We discuss behavioural and physiological mechanisms that form a deception continuum from secrecy to overt signals. Deceptive tactics usually succeed by being rare and are often evolving under co‐evolutionary arms races, sometimes leading to the evolution of polymorphism. The degree of deception can also vary depending on the environmental conditions. Finally, we suggest a conceptual framework for studying deception and highlight important questions for future studies.  相似文献   
70.
Responses to sexually antagonistic selection are thought to be constrained by the shared genetic architecture of homologous male and female traits. Accordingly, adaptive sexual dimorphism depends on mechanisms such as genotype‐by‐sex interaction (G×S) and sex‐specific plasticity to alleviate this constraint. We tested these mechanisms in a population of Xiphophorus birchmanni (sheepshead swordtail), where the intensity of male competition is expected to mediate intersexual conflict over age and size at maturity. Combining quantitative genetics with density manipulations and analysis of sex ratio variation, we confirm that maturation traits are dimorphic and heritable, but also subject to large G×S. Although cross‐sex genetic correlations are close to zero, suggesting sex‐linked genes with important effects on growth and maturation are likely segregating in this population, we found less evidence of sex‐specific adaptive plasticity. At high density, there was a weak trend towards later and smaller maturation in both sexes. Effects of sex ratio were stronger and putatively adaptive in males but not in females. Males delay maturation in the presence of mature rivals, resulting in larger adult size with subsequent benefit to competitive ability. However, females also delay maturation in male‐biased groups, incurring a loss of reproductive lifespan without apparent benefit. Thus, in highly competitive environments, female fitness may be limited by the lack of sex‐specific plasticity. More generally, assuming that selection does act antagonistically on male and female maturation traits in the wild, our results demonstrate that genetic architecture of homologous traits can ease a major constraint on the evolution of adaptive dimorphism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号