首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2671篇
  免费   146篇
  国内免费   149篇
  2023年   49篇
  2022年   61篇
  2021年   74篇
  2020年   85篇
  2019年   94篇
  2018年   117篇
  2017年   51篇
  2016年   74篇
  2015年   77篇
  2014年   162篇
  2013年   160篇
  2012年   129篇
  2011年   194篇
  2010年   166篇
  2009年   185篇
  2008年   208篇
  2007年   134篇
  2006年   134篇
  2005年   96篇
  2004年   75篇
  2003年   58篇
  2002年   52篇
  2001年   45篇
  2000年   36篇
  1999年   33篇
  1998年   29篇
  1997年   25篇
  1996年   28篇
  1995年   20篇
  1994年   30篇
  1993年   23篇
  1992年   14篇
  1991年   19篇
  1990年   24篇
  1989年   11篇
  1988年   14篇
  1987年   8篇
  1986年   10篇
  1985年   13篇
  1984年   18篇
  1983年   11篇
  1982年   15篇
  1981年   21篇
  1980年   12篇
  1979年   12篇
  1977年   7篇
  1976年   14篇
  1975年   6篇
  1974年   11篇
  1973年   10篇
排序方式: 共有2966条查询结果,搜索用时 15 毫秒
91.
Submarine elevations and ridges present an array of definitional uncertainties to coastal states that are engaged in the high-stakes process of delimiting extended continental shelves. Faced with the imprecise terminology of Article 76, with the nonspecific wording of the Scientific and Technical Guidelines of the Commission on the Limits of the Continental Shelf (CLCS), and with the Commission's rules of confidentiality that hamper the open exchange of information concerning ridge and elevation assessments in previous continental shelf implementations, a coastal state needs to develop its own evaluations of what might and might not pass the “test of appurtenance.” Significant components of a continental shelf submission might thus be formulated on the basis of these national evaluations, only to have the CLCS question them, which could necessitate a potentially expensive and time-consuming reworking of the submission. This article outlines the ramifications of this wild card effect.  相似文献   
92.
L’anatomie des segments, des jonctions et des articulations du métasoma est comparée après dissection de 86 espèces de fourmis représentant les principaux taxons actuellement reconnus, à l’exception des Formicinae, des Dolichoderinae et de quelques taxons isolés. À la suite des travaux modernes, l’attention s’est d’abord portée sur le segment IV et sur la notion de présclérite, mais il s’est avéré que pour bien comprendre la morphologie et l’évolution de ce segment, il fallait étudier le segment III, puis le segment II et enfin le propodeum. Deux concepts nouveaux sont introduits : celui de présegmentation et celui de processus postérograde. La présegmentation d’un segment désigne la transformation de la partie antérieure d’un segment. Elle conduit à la formation d’un ou deux présclérites et dans le cas du segment II à celle d’une structure articulaire compacte, le manubrium, à l’étranglement en arrière du présegment et à la pétiolation ou formation d’un pétiole. L’observation de séries d’ouvrières de fourmis montre que la présegmentation d’un segment est toujours précédée par celle du segment précédent (il n’y a pas de postpétiole sans pétiole, etc.), ce qui aboutit à la transformation progressive du métasoma, de l’avant vers l’arrière à partir du segment II ou processus postérograde. Cette étude est étendue à plusieurs familles d’aculéates parmi lesquelles nous avons sélectionné quelques espèces dont le métasoma antérieur est moins évolué que celui des fourmis actuelles. Le rapprochement de ces espèces avec les fourmis permet de repérer des homologies susceptibles de contribuer à la compréhension de l’évolution ancestrale des fourmis et de leur état actuel, en particulier de l’origine des latérosclérites du segment II. Ceci conduit à un classement des architectures métasomatiques en groupes basés sur une typologie du présegment III. On peut ainsi distinguer trois groupes principaux d’architecture : ponériforme, doryliforme et myrmiciforme. 13 diamètres sont par ailleurs mesurés sur les segments II, III et IV. L’analyse en composantes principales de 12 de ces mesures permet de constater qu’il est possible de caractériser les groupes d’architecture par des combinaisons linéaires de ces mesures. On le vérifie par des AFD des trois grands groupes d’architecture dans lesquels rentrent la presque totalité des fourmis étudiées. Les groupes d’architecture sont presque tous bien discriminés par AFD, mais quelques exceptions doivent être expliquées. Des analyses complémentaires permettent d’imputer cette anomalie à l’existence dans les groupes architecturaux, d’espèces mono et bipétiolées. On obtient en conséquence une discrimination complète des trois groupes en effectuant des AFD séparées des espèces monopétiolées et des espèces bipétiolées. Ceci illustre l’effet de la postpétiolation sur la géométrie des segments au cours du processus postérograde. Ce processus est également illustré par le calcul de coefficients de corrélation entre des mesures effectuées sur les deux premiers segments, et les autres mesures. Ceci peut être expliqué par la propagation postérograde de contraintes de développement. Durant l’évolution, le processus postérograde est combiné à deux autres types de transformations : l’involution progressive des structures intercalaires du segment II, qui préexistaient vraisemblablement chez les ancêtres crétacés des fourmis actuelles, et différentes transformations aléatoires de l’abdomen, plus ou moins directionnelles, mais cumulatives. La classification des sous-familles en groupes Ponéroïde, Doryloïde et Myrmicoïde peut être alors déduite du classement des architectures, mais un petit nombre de genres ne rentre pas dans ces trois groupes. Leurs affinités ne peuvent être comprises que par la prise en compte de caractères anatomiques ou architecturaux de la tête et du thorax. On obtient alors une classification proche de la récente classification « intuitive » de Bolton (2003), mais avec des justifications très différentes. Cette nouvelle classification est la suivante :

  • 1. – Architectures du métasoma semblables dans chaque groupe et cohérence architecturale

  • 1.1. – Complexe Ponéroïde (présegment III hémi-annulaire, architecture thoracique ponériforme)

  • 1.1.1. – Groupe Ponéroïde: Amblyoponinae, Ponerinae, Ectatomminae, Paraponerinae

  • 1.1.2. – Groupe Myrmécioïde: Myrmeciinae, Pseudomyrmecinae

  • 1.2. – Complexe Doryloïde (présegment III pseudo-annulaire, architecture doryliforme): Cerapachynae, Dorylinae, Ecitoninae, Aenictinae

  • 1.3. – Complexe Myrmicoïde (présegment III annulaire, architecture myrmiciforme): Myrmicinae, Agroecomyrmecinae (non disséqués)

  • 2. – Architectures du métasoma dissemblables au sein de chaque groupe. Classement basé sur d’autres critères

  • 2.1. – Complexe Apomyrmoïde (1) (basé sur l’architecture thoracique); Apomyrminae (présegment III hémi-annulaire), Leptanillinae (présegment III atypique par rapport aux types annulaire, pseudo-annu- laire et hémi-annulaire)

  • 2.2. – Complexe Procératinoïde (basé sur l’architecture céphalique): Proceratiini (présegment III annulaire: Discothyrea, présegment III pseudo-annulaire: Proceratium); Probolomyrmecini (présegment III hémi-annulaire: Probolomyrmex)

  • 3. – Architectures inclassables: Aneuretinae (présegment III pseudo-annulaire); Leptanilloidinae (présegment III annulaire selon Brandao et al., 1999)

  • 4. – Architectures formiciformes (presegment III différent des précédents): Dolichoderinae, Formicinae (non étudiées en détail)

Lanalyse conduit à l’établissement d’un cladogramme. Celui-ci est implicitement une phylogénie non enracinée, mais incomplète. La présente étude montre que les complexes Ponéroïde, Doryloïde et Myrmicoïde sont monophylétiques. Mais la topologie des sous-familles qui les composent ne peut pas être résolue par l’étude du métasoma parce que toutes les fourmis connues sont déjà parvenues au stade 3 ou en limite 2–3 (genre Adetomyrma). Pour établir des liens de parenté entre ces complexes, il faudrait recourir à l’étude de l’architecture céphalique ou thoracique. On a limité ici cette recherche à celle de synapomorphies permettant de renforcer l’identité des trois grands complexes et d’établir une parenté entre quelques sous-familles réunies dans les complexes Apomyrmoïde et Procératinoïde dont les repré- sentants possèdent des architectures métasomatiques très différentes.  相似文献   
93.
Grasses very often form symbiotic associations with Neotyphodium/Epichloë endophytic fungi. These endophytes often allow the host grass to be protected from different pathogens. However, there is little known about the mechanisms of such endophyte influence on the host. Thus, the purpose of this research was to examine the effect of the N. lolii endophyte on the total production of phenolic compounds, VOCs emission and the resistance of three perennial ryegrass genotypes infected by pathogenic Fusarium poae. Analyses of total phenolics content were performed in control (not inoculated) and inoculated plants after 1, 2, 3, 4, 5, and 6 days (DAI) and for VOCs after 0, 3, 6 and 12 DAI. The presence of endophytes significantly reduced the disease index in two of the three genotypes relative to that in E−. Plants infected by N. lolii exhibited higher production of phenolics relative to the E− plants. The highest amounts of phenolics were observed on the second and sixth DAI. Genotype Nl22 showed the strongest effect of the endophyte on the production of phenolics, which increased by over 61%. Both the endophyte infected and non-infected plants emitted most abundantly two GLVs ((Z)-3-hexenal, (Z)-3-hexen-1-yl acetate), three terpenes (linalool, (Z)-ocimene, β-caryophyllene) and three shikimic acid pathway derivatives (benzyl acetate, indole, and methyl salicylate). The endophyte presence and the intervals of VOCs detection were a highly significant source of variation for all emitted volatiles (P < 0.001). The genotype of the perennial ryegrass significantly affected only the emission of methyl salicylate (P < 0.05) and β-caryophyllene (P < 0.05). Most of the VOCs ((Z)-3-hexen-1-yl acetate, (Z)-3-hexenal, linalool and methyl salicylate) reached their highest levels of emission on the sixth DAI, when averaged over genotypes and endophyte status. The results highlight the role of Neotyphodium spp. in the mediation of quadro-trophic interactions among plants, symbiotic endophytes, invertebrate herbivores and plant pathogenic fungi. Our results also confirm the fact that symbiotic plants can activate a defense reaction faster than non-symbiotic plants after a pathogen attack. Thus, N. lolii can be involved in the defense of perennial ryegrass against pathogens and potentially could be central to the host plants’ protection.  相似文献   
94.
The group 1 pathogenesis-related (PR-1) proteins have long been considered hallmarks of hypersensitive response/defense pathways in plants, but their biochemical functions are still obscure despite resolution of the NMR/X-ray structures of several PR-1-like proteins, including P14a (the prototype PR-1). We report here the characterization of two basic PR-1 proteins (PR-1-1 and PR-1-5) recently identified from hexaploid wheat (Triticum aestivum). Both proteins were expressed in Pichia pastoris as a single major species of ∼15 kDa. Sequence identity of the expressed PR-1 proteins was verified by MALDI-TOF/TOF analysis. Accumulation of the native PR-1-5 protein in pathogen-challenged wheat was confirmed by protein gel blot analysis. Low-temperature SDS-PAGE and yeast two-hybrid assays revealed that PR-1-1 exists primarily as a monomer whereas PR-1-5 forms homodimers. Both PR-1 proteins are resistant to proteases compared to bovine serum albumin, but PR-1-1 shows resistance mainly to subtilisin and protease K (serine proteases) whereas PR-1-5 shows resistance to subtilisin, protease K and papain (a cysteine protease). Site-specific mutations at the five putative active sites in the PR-1 domain all affected dimerization, with the mutations at Glu-72 and Glu-102 (in the PR-1-5 numeration) also diminishing protease resistance. Sequence analysis revealed that the Glu-72 and Glu-102 residues are located in motif-like sequences that are conserved in both PR-1 and the human apoptosis-related caspase proteins. These findings prompt us to examine the function of PR-1 for a role in protease-mediated programmed cell death pathways in plants.  相似文献   
95.
Breast cancer cells develop resistance to endocrine therapies by shifting between estrogen receptor (ER)-regulated and growth factor receptor (GFR)-regulated survival signaling pathways. To study this switch, we propose a mathematical model of crosstalk between these pathways. The model explains why MCF7 sub-clones transfected with HER2 or EGFR show three GFR-distribution patterns, and why the bimodal distribution pattern can be reversibly modulated by estrogen. The model illustrates how transient overexpression of ER activates GFR signaling and promotes estrogen-independent growth. Understanding this survival-signaling switch can help in the design of future therapies to overcome resistance in breast cancer.  相似文献   
96.
Endoplasmic reticulum (ER) stress is associated with the development of diabetes. The present study sought to investigate the effect of Liraglutide, a glucagon like peptide 1 analogue, on ER stress in β-cells. We found that Liraglutide protected the pancreatic INS-1 cells from thapsigargin-induced ER stress and the ER stress associated cell apoptosis, mainly by suppressing the PERK and IRE1 pathways. We further tested the effects of Liraglutide in the Akita mouse, an ER-stress induced type 1 diabetes model. After administration of Liraglutide for 8 weeks, p-eIF2α and p-JNK were significantly decreased in the pancreas of the Akita mouse, while the treatment showed no significant impact on the levels of insulin of INS-cells. Taken together, our findings suggest that Liraglutide may protect pancreatic cells from ER stress and its related cell death.  相似文献   
97.
Honeybees, like other insects, accumulate electric charge in flight, and when their body parts are moved or rubbed together. We report that bees emit constant and modulated electric fields when flying, landing, walking and during the waggle dance. The electric fields emitted by dancing bees consist of low- and high-frequency components. Both components induce passive antennal movements in stationary bees according to Coulomb''s law. Bees learn both the constant and the modulated electric field components in the context of appetitive proboscis extension response conditioning. Using this paradigm, we identify mechanoreceptors in both joints of the antennae as sensors. Other mechanoreceptors on the bee body are potentially involved but are less sensitive. Using laser vibrometry, we show that the electrically charged flagellum is moved by constant and modulated electric fields and more strongly so if sound and electric fields interact. Recordings from axons of the Johnston organ document its sensitivity to electric field stimuli. Our analyses identify electric fields emanating from the surface charge of bees as stimuli for mechanoreceptors, and as biologically relevant stimuli, which may play a role in social communication.  相似文献   
98.
以13种苎麻属植物为试验材料,于植物工艺成熟期取样测定经济性状并用显微镜观察横截面及离析纤维细胞形态,研究苎麻属植物纤维细胞形态结构与其经济性状和物理性能的相关性。结果显示:(1)苎麻属野生种质的纤维细胞外观形态表现与栽培种苎麻基本一致,多呈圆形、多边形、椭圆形和肾形等,形态各异,大小不一。(2)茎秆横截面纤维细胞直径、腔径和纤维胞总数都明显少于对照栽培种,与其原麻产量存在不同程度的正相关性。(3)离析纤维细胞长度、宽度、壁厚和结节数与纤维细度存在不显著负相关,且野生苎麻属种质的细胞长度、宽度明显小于栽培种苎麻。研究表明,野生苎麻属种质在提高栽培种产量上无太大效应,但其在优良纤维基因选育方面和改良栽培种苎麻纤维品质上具有重要应用价值。  相似文献   
99.
中国部分野生百合自交和组内及组间杂交亲和性研究   总被引:1,自引:0,他引:1  
以百合属(Lilium)4个组13种野生百合为试验材料,配置80个杂交组合,分析中国野生百合自交、组内及组间杂交的亲和性.采用延迟授粉和切割柱头两种授粉方式和胚拯救技术,以克服受精前、后的障碍,提高育种效率.结果显示:百合自交亲和性存在一定差异,大花卷丹(L.leichtlinii)和兰州百合(L.davidi‘ unicdor cotton')自交不亲和;卷瓣组组内杂交在所配置的杂交组合中,仅有3个组合[垂花百合(L.c ernuum)×细叶百合(L.pumilum)、兰州百合×垂花百合以及兰州百合×大花卷丹]通过延迟授粉获得杂交胚,并通过组培获得杂交苗;卷瓣组与钟花组组间杂交亲和性较好.研究表明,对于大多数的杂交组合,延迟授粉比切割柱头对克服受精前障碍有效;而对于绝大多数的自交和杂交组合,组培能有效克服受精后障碍,并获得子一代苗.  相似文献   
100.
山西省重点保护野生植物资源及区系特征研究   总被引:3,自引:0,他引:3  
以《国家重点保护野生植物名录(第一批)》和《山西省重点保护野生植物名录(第一批)》为依据,建立山西省重点保护野生植物名录。共记录57种保护植物,隶属于38科45属(其中国家Ⅰ级保护2种,国家Ⅱ级保护6种,省级保护49种)。分析结果得出,山西省重点保护野生植物在全省的分布不集中,零散分布于全省61个县区境内,且绝大多数物种的分布范围很狭窄。山西省重点保护野生植物区系具有复杂多样、起源古老、孑遗植物和单种属多等特点,科、属植物区系成分以温带分布型占优势,同时也有较明显的热带性质,过渡性特征比较明显,有其独特的地理优势和保护价值。本研究旨在对山西省重点保护野生植物资源现状及区系特征进行初步研究,从而为野生植物资源的保护和合理有效地利用提供科学的理论依据与参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号