Glycine latifolia (Benth.) Newell & Hymowitz (2n = 40), one of the 27 wild perennial relatives of soybean, possesses genetic diversity and agronomically favorable traits that are lacking in soybean. Here, we report the 939‐Mb draft genome assembly of G. latifolia (PI 559298) using exclusively linked‐reads sequenced from a single Chromium library. We organized scaffolds into 20 chromosome‐scale pseudomolecules utilizing two genetic maps and the Glycine max (L.) Merr. genome sequence. High copy numbers of putative 91‐bp centromere‐specific tandem repeats were observed in consecutive blocks within predicted pericentromeric regions on several pseudomolecules. No 92‐bp putative centromeric repeats, which are abundant in G. max, were detected in G. latifolia or Glycine tomentella. Annotation of the assembled genome and subsequent filtering yielded a high confidence gene set of 54 475 protein‐coding loci. In comparative analysis with five legume species, genes related to defense responses were significantly overrepresented in Glycine‐specific orthologous gene families. A total of 304 putative nucleotide‐binding site (NBS)‐leucine‐rich‐repeat (LRR) genes were identified in this genome assembly. Different from other legume species, we observed a scarcity of TIR‐NBS‐LRR genes in G. latifolia. The G. latifolia genome was also predicted to contain genes encoding 367 LRR‐receptor‐like kinases, a family of proteins involved in basal defense responses and responses to abiotic stress. The genome sequence and annotation of G. latifolia provides a valuable source of alternative alleles and novel genes to facilitate soybean improvement. This study also highlights the efficacy and cost‐effectiveness of the application of Chromium linked‐reads in diploid plant genome de novo assembly. 相似文献
Background: Large areas of heathland landscapes in Galicia, north-west Spain, have traditionally been extensively grazed by free-ranging cattle and wild ponies. Recently, a large reduction in the number of these larger herbivores has been observed, with unknown consequences for the habitat.
Aims: To evaluate the effects of grazing and herbivore density on plant diversity, community composition and vegetation structure of the endemic wet heathlands dominated by Erica mackayana in Galicia.
Methods: Field sampling of vascular plants, generalised linear models (GLMs), non-metric multidimensional distance scaling (NMDS).
Results: Grazed sites had significantly higher total and rare species richness and diversity than ungrazed sites. Higher densities of cattle resulted in lower numbers of rare species, while wild pony density had no effect on rare species richness. In grazed sites, vegetation was lower with greater variation in height, resulting in greater heterogeneity of the habitat. Precipitation and summer temperatures were related to plant diversity, mainly beta diversity. Soil organic matter negatively correlated with rare species.
Discussion: Grazing, mostly by wild ponies, was demonstrated to be positively related to plant diversity and vegetation structure. Lack of grazing or high cattle densities resulted in a negative effect on total and rare species richness and diversity. Future climate change may negatively affect heathland plant diversity. Galician wild ponies represent a unique case of sustainable management of a wild species and an invaluable cultural heritage. Moreover, they have a significant role in maintaining the endemic E. mackayana heathlands, what would justify specific conservation actions for these large herbivores. 相似文献
The cultivation of perennial wild plant mixtures (WPMs) in biogas cropping systems dominated by maize (Zea mays L.) restores numerous ecosystem functions and improves both spatial and temporal agrobiodiversity. In addition, the colorful appearance of WPM can help enhance landscape beauty. However, their methane yield per hectare (MYH) varies greatly and amounts to only about 50% that of maize. This study aimed at decreasing MYH variability and increasing accumulated MYH of WPM by optimizing the establishment method. A field trial was established in southwest Germany in 2014, and is still running. It tested the effects of three WPM establishment procedures (E1: alone [without maize, in May], E2: undersown in cover crop maize [in May], E3: WPM sown after whole‐crop harvest of spring barley [Hordeum vulgare L.] in June) on both MYH and species diversity of two WPMs [S1, S2]). Mono‐cropped maize and cup plant (Silphium perfoliatum L.) were used as reference crops. Of the WPM treatments tested, S2E2 achieved the highest (19,296 , 60.5% of maize) and S1E1 the lowest accumulated MYH (8,156 , 25.6% of maize) in the years 2014–2018. Cup plant yielded slightly higher than S2E2 (19,968 , 62.6% of maize). In 2014, the WPM sown under maize did not significantly affect the cover crop performance. From 2015 onward, E1 and E2 had comparable average annual MYH and average annual number of WPM species. With a similar accumulated MYH but significantly higher number of species (3.5–10.2), WPM S2E2 outperformed cup plant. Overall, the long‐term MYH performance of WPM cultivation for biogas production can be significantly improved by undersowing with maize as cover crop. This improved establishment method could help facilitate the implementation of WPM cultivation for biogas production and thus reduce the trade‐off between bioenergy and biodiversity. 相似文献
The currrent California condor (Gymnogyps californianus) recovery plan entails increasing the reproductive rate via replacement-clutch manipulation of eggs. During the period from 1983 to 1985, 15 eggs were removed from wild nesting pairs for artificial incubation. The eggs were incubated at a dry bulb temperature of 36.4°C in modified forced-air Lyon Electric incubators. The incubation humidity was adjusted for individual eggs based on weight loss data (water = weight), 25.6–30.0°C wet bulb (41.0–63.0% Relative Humidity (RH)). The chicks were hatched initially under forced-air conditions of 36.1°C dry bulb, 31.1–01.7°C wet bulb (70.0–73.0% RH). In 1984, hatching parameters were changed to still-air conditions, 36.1°C dry bulb (top of the egg), 35.0°C dry bulb (bottom of the egg), 31.1–31.7°C wet bulb (70.0-73.0% RH). Tactile and auditory stimulation was utilized during the pip-to-hatch interval. From among 15 eggs collected, 13 hatched, and 12 condor chicks were raised successfully (hatchability: 86.7%; survivability: 92.3%). 相似文献
Human neutrophil elastase (NE) is a key host defense protease that cleaves virulence factors of Gram-negative bacteria. NE and cathepsin G (CG) are chymotrypsin-like serine proteases with sequence and structural similarities, and both are abundant in neutrophil granules. Unlike NE, CG does not cleave virulence factors of enteric bacteria. Through structure-function analysis, we identified regions in NE that are essential for cleaving Shigella virulence proteins. NE residues at eight different positions were replaced with analogous amino acids in CG or with alanine. Functional analysis of recombinant mutant proteins showed that a single residue at position 98 and multiple amino acid stretches in the three different regions 58A-61, 163-181, and 216-224 determine NE specificity. These NE mutants cleaved the CG-specific, but not the NE-specific, synthetic peptide substrate and did not degrade Shigella virulence factors. Interestingly, exchanging the amino acid at position 98 in CG for the NE equivalent enabled this CG mutant to cleave Shigella virulence factors. Analysis of the NE proteolytic products of the Shigella virulence factor IpaB shows that NE has specific cleavage sites. These results indicate that Shigella virulence factor specificity maps to a distinct region close to NE's active site. 相似文献