首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21532篇
  免费   2377篇
  国内免费   2296篇
  2024年   97篇
  2023年   608篇
  2022年   685篇
  2021年   1082篇
  2020年   1059篇
  2019年   1154篇
  2018年   1010篇
  2017年   835篇
  2016年   907篇
  2015年   920篇
  2014年   1123篇
  2013年   1555篇
  2012年   980篇
  2011年   929篇
  2010年   718篇
  2009年   946篇
  2008年   1004篇
  2007年   1012篇
  2006年   1027篇
  2005年   923篇
  2004年   833篇
  2003年   781篇
  2002年   747篇
  2001年   657篇
  2000年   583篇
  1999年   495篇
  1998年   392篇
  1997年   321篇
  1996年   354篇
  1995年   287篇
  1994年   314篇
  1993年   282篇
  1992年   255篇
  1991年   187篇
  1990年   174篇
  1989年   149篇
  1988年   114篇
  1987年   100篇
  1986年   82篇
  1985年   136篇
  1984年   91篇
  1983年   56篇
  1982年   59篇
  1981年   47篇
  1980年   24篇
  1979年   21篇
  1978年   16篇
  1977年   18篇
  1976年   12篇
  1973年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
The pink, tubular, nectariferous flowers of Melocactus intortus (Cactaceae) in Puerto Rico are visited by native hummingbirds (Anthracothorax dominicus), but also by invasive honeybees (Apis mellifera) and ants (Solenopsis sp.). We sought to determine if the bees and ants significantly alter the pollination of M. intortus by measuring pollinator effectiveness. Using traditional estimates of effectiveness (visitation rate and seed set), our results show that hummingbirds were the most effective pollinators as expected. Bees and ants were less effective, and their contributions were one‐fourth to one‐tenth of that observed for hummingbirds. We then modified this measure of effectiveness by adding two components, fitness of progeny and temporal availability of visitors, both of which refine estimates of flower visitor effectiveness. With these new estimations, we found that the effectiveness values of all three animal visitors decreased; however, the role of hummingbirds as the principal pollinator was maintained, whereas the effectiveness values of bees and ants approached zero. By these new measures of overall pollinator effectiveness, the invasive honeybees and ants have little effect on the reproductive success of M. intortus.  相似文献   
42.
Background and Aims: While invasive species may escape from natural enemies in thenew range, the establishment of novel biotic interactions withspecies native to the invaded range can determine their success.Biological control of plant populations can be achieved by manipulationof a species' enemies in the invaded range. Interactions weretherefore investigated between a native parasitic plant andan invasive legume in Mediterranean-type woodlands of SouthAustralia. Methods: The effects of the native stem parasite, Cassytha pubescens,on the introduced host, Cytisus scoparius, and a co-occurringnative host, Leptospermum myrsinoides, were compared. The hypothesisthat the parasitic plant would have a greater impact on theintroduced host than the native host was tested. In a fieldstudy, photosynthesis, growth and survival of hosts and parasitewere examined. Key Results: As predicted, Cassytha had greater impacts on the introducedhost than the native host. Dead Cytisus were associated withdense Cassytha infections but mortality of Leptospermum wasnot correlated with parasite infection. Cassytha infection reducedthe photosynthetic rates of both hosts. Infected Cytisus showedslower recovery of photosystem II efficiency, lower transpirationrates and reduced photosynthetic biomass in comparison withuninfected plants. Parasite photosynthetic rates and growthrates were higher when growing on the introduced host Cytisus,than on Leptospermum. Conclusions: Infection by a native parasitic plant had strong negative effectson the physiology and above-ground biomass allocation of anintroduced species and was correlated with increased plant mortality.The greater impact of the parasite on the introduced host maybe due to either the greater resources that this host providesor increased resistance to infection by the native host. Thisdisparity of effects between introduced host and native hostindicates the potential for Cassytha to be exploited as a controltool.  相似文献   
43.
Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae: Lamiini) is an invasive wood‐boring beetle with an unusually broad host range and a proven ability to increase its host range as it colonizes new areas and encounters new tree species. The beetle is native to eastern Asia and has become an invasive pest in North America and Europe, stimulating interest in delineating host and non‐host tree species more clearly. When offered a choice among four species of living trees in a greenhouse, adult A. glabripennis fed more on golden‐rain tree (Koelreuteria paniculata Laxmann) and river birch (Betula nigra L.) than on London planetree (Platanus × acerifolia (Aiton) Willdenow) or callery pear (Pyrus calleryana Decaisne). Oviposition rate was highest in golden‐rain tree, but larval mortality was also high and larval growth was slowest in this tree species. Oviposition rate was lowest in callery pear, and larvae failed to survive in this tree species, whether they eclosed from eggs laid in the trees or were manually inserted into the trees. Adult beetles feeding on callery pear had a reduced longevity and females feeding only on callery pear failed to develop any eggs. The resistance of golden‐rain tree against the larvae appears to operate primarily through the physical mechanism of abundant sap flow. The resistance of callery pear against both larvae and adults appears to operate through the chemical composition of the tree, which may include compounds that are toxic or which otherwise interfere with normal growth and development of the beetle. Unlike river birch or London planetree, both golden‐rain tree and callery pear are present in the native range of A. glabripennis and may therefore have developed resistance to the beetle by virtue of exposure to attack during their evolutionary history.  相似文献   
44.
Many lung disease processes are characterized by structural and functional heterogeneity that is not directly appreciable with traditional physiological measurements. Experimental methods and lung function modeling to study regional lung function are crucial for better understanding of disease mechanisms and for targeting treatment. Synchrotron radiation offers useful properties to this end: coherence, utilized in phase-contrast imaging, and high flux and a wide energy spectrum which allow the selection of very narrow energy bands of radiation, thus allowing imaging at very specific energies. K-edge subtraction imaging (KES) has thus been developed at synchrotrons for both human and small animal imaging. The unique properties of synchrotron radiation extend X-ray computed tomography (CT) capabilities to quantitatively assess lung morphology, and also to map regional lung ventilation, perfusion, inflammation and biomechanical properties, with microscopic spatial resolution. Four-dimensional imaging, allows the investigation of the dynamics of regional lung functional parameters simultaneously with structural deformation of the lung as a function of time. This review summarizes synchrotron radiation imaging methods and overviews examples of its application in the study of disease mechanisms in preclinical animal models, as well as the potential for clinical translation both through the knowledge gained using these techniques and transfer of imaging technology to laboratory X-ray sources.  相似文献   
45.
This paper examines the relationship between protected and endangered riverine species (target species) and hydrodynamics in river-floodplain ecosystems, combining ecological and policy-legal aspects of biodiversity conservation in river management. The importance of different hydrodynamic conditions along a lateral gradient was quantified for various taxonomic groups. Our results show that (i) target species require ecotopes along the entire hydrodynamic gradient; (ii) different parts of the hydrodynamic gradient are important to different species, belonging to different taxonomic groups; (iii) in particular low-dynamic parts are important for many species and (iv) species differ in their specificity for hydrodynamic conditions. Many species of higher plants, fish and butterflies have a narrow range for hydrodynamics and many species of birds and mammals use ecotopes along the entire gradient. Even when focussing only on target species, the entire natural hydrodynamic gradient is important. This means that the riverine species assemblage as a whole can benefit from measures focussing on target species only. River reconstruction and management should aim at re-establishing the entire hydrodynamic gradient, increasing the spatial heterogeneity of hydrodynamic conditions.  相似文献   
46.
J. K. Bush 《Plant Ecology》2006,183(2):215-225
This study evaluated the relationships among soil moisture, soil salinity, and soil oxygen on the growth of Helianthus paradoxus (Asteraceae), a threatened inland salt marsh species of western North America. The study was conducted in large growth boxes (1×2×0.3 m) tilted at an angle to achieve a saturated to dry water gradient similar to that found in the marsh. This experimental design allowed the evaluation of major abiotic factors (soil moisture and soil salinity) which have been shown to be potentially important for this species, while removing major biotic factors, such as competition from other community dominants. Maximum aboveground biomass occurred in the middle rows of the boxes, where surface soil water was reduced and subsurface soil water was intermediate in the gradient. Regression analyses indicated that H. paradoxus would grow best where surface soil water is approximately 5%, subsurface soil water ranges from 20 to 30%, and where surface soil salinity is less than 0.5 g kg−1. Edaphic variables, particularly soil moisture and soil salinity, affect the growth of H. paradoxus. Data presented here suggest that the survival of this species depends on maintenance of the hydrologic regime.  相似文献   
47.
《Plant Ecology & Diversity》2013,6(2-3):227-241
Background: Although forest floor forms a large biomass pool in forested peatlands, little is known about its role in ecosystem carbon (C) dynamics.

Aim: We aimed to quantify forest floor photosynthesis (P FF) and respiration (R FF) as a part of overall C dynamics in a drained peatland forest in southern Finland.

Methods: We measured net forest floor CO2 exchange with closed chambers and reconstructed seasonal CO2 exchange in the prevailing plant communities.

Results: The vegetation was a mosaic of plant communities that differed in CO2 exchange dynamics. The reconstructed growing season P FF was highest in the Sphagnum community and lowest in the feather moss communities. On the contrary, R FF was highest in the feather moss communities and lowest in the Sphagnum community. CO2 assimilated by the forest floor was 20–30% of the total CO2 assimilated by the forest. The forest floor was a net CO2 source to the atmosphere, because respiration from ground vegetation, tree roots and decomposition of soil organic matter exceeded the photosynthesis of ground vegetation.

Conclusions: Tree stand dominates C fluxes in drained peatland forests. However, forest floor vegetation can have a noticeable role in the C cycle of peatlands drained for forestry. Similarly to natural mires, Sphagnum moss-dominated communities were the most efficient assimilators of C.  相似文献   
48.
Despite the importance of understanding plant growth, the mechanisms underlying how plant and fruit growth declines during drought remain poorly understood. Specifically, it remains unresolved whether carbon or water factors are responsible for limiting growth as drought progresses. We examine questions regarding the relative importance of water and carbon to fruit growth depending on the water deficit level and the fruit growth stage by measuring fruit diameter, leaf photosynthesis, and a proxy of cell turgor in olive (Olea europaea). Flow cytometry was also applied to determine the fruit cell division stage. We found that photosynthesis and turgor were related to fruit growth; specifically, the relative importance of photosynthesis was higher during periods of more intense cell division, while turgor had higher relative importance in periods where cell division comes close to ceasing and fruit growth is dependent mainly on cell expansion. This pattern was found regardless of the water deficit level, although turgor and growth ceased at more similar values of leaf water potential than photosynthesis. Cell division occurred even when fruit growth seemed to stop under water deficit conditions, which likely helped fruits to grow disproportionately when trees were hydrated again, compensating for periods with low turgor. As a result, the final fruit size was not severely penalized. We conclude that carbon and water processes are able to explain fruit growth, with importance placed on the combination of cell division and expansion. However, the major limitation to growth is turgor, which adds evidence to the sink limitation hypothesis.  相似文献   
49.
A new set of signals for studying detectability of an X-ray imaging system is presented. The results obtained with these signals are intended to complement the NEQ results.The signals are generated from line spread profiles by progressively removing their lower frequency components and the resulting high frequency residues (HFRs) form the set of signals to be used in detectability studies. Detectability indexes for these HFRs are obtained using a non-prewhitening (NPW) observer and a series of edge images are used to obtain the HFRs, the covariance matrices required by the NPW model and the MTF and NPS used in NEQ calculations. The template used in the model is obtained by simulating the processes of blurring and sampling of the edge images. Comparison between detectability indexes for the HFRs and NEQ are carried out for different acquisition techniques using different beam qualities and doses.The relative sensitivity shown by detectability indexes using HFRs is higher than that of NEQ, especially at lower doses. Also, the different observers produce different results at high doses: while the ideal Bayesian observer used by NEQ distinguishes between beam qualities, the NPW used with the HFRs produces no differences between them.Delta functions used in HFR are the opposite of complex exponential functions in terms of their support in the spatial and frequency domains. Since NEQ can be interpreted as detectability of these complex exponential functions, detectability of HFRs is presented as a natural complement to NEQ in the performance assessment of an imaging system.  相似文献   
50.
The isolated blood-perfused lung preparation is widely used to visualize and define signaling in single microvessels. By coupling this preparation with real time imaging, it becomes feasible to determine permeability changes in individual pulmonary microvessels. Herein we describe steps to isolate rat lungs and perfuse them with autologous blood. Then, we outline steps to infuse fluorophores or agents via a microcatheter into a small lung region. Using these procedures described, we determined permeability increases in rat lung microvessels in response to infusions of bacterial lipopolysaccharide. The data revealed that lipopolysaccharide increased fluid leak across both venular and capillary microvessel segments. Thus, this method makes it possible to compare permeability responses among vascular segments and thus, define any heterogeneity in the response. While commonly used methods to define lung permeability require postprocessing of lung tissue samples, the use of real time imaging obviates this requirement as evident from the present method. Thus, the isolated lung preparation combined with real time imaging offers several advantages over traditional methods to determine lung microvascular permeability, yet is a straightforward method to develop and implement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号