首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51769篇
  免费   17951篇
  国内免费   1363篇
  2024年   74篇
  2023年   473篇
  2022年   682篇
  2021年   1271篇
  2020年   3367篇
  2019年   4921篇
  2018年   5076篇
  2017年   4962篇
  2016年   4611篇
  2015年   4633篇
  2014年   4741篇
  2013年   4999篇
  2012年   4210篇
  2011年   4270篇
  2010年   3658篇
  2009年   2554篇
  2008年   2724篇
  2007年   2160篇
  2006年   2165篇
  2005年   1879篇
  2004年   1508篇
  2003年   1627篇
  2002年   1375篇
  2001年   1045篇
  2000年   591篇
  1999年   379篇
  1998年   108篇
  1997年   123篇
  1996年   103篇
  1995年   112篇
  1994年   103篇
  1993年   81篇
  1992年   96篇
  1991年   59篇
  1990年   40篇
  1989年   41篇
  1988年   46篇
  1987年   32篇
  1986年   23篇
  1985年   39篇
  1984年   36篇
  1983年   24篇
  1982年   26篇
  1981年   11篇
  1980年   8篇
  1979年   5篇
  1978年   5篇
  1977年   3篇
  1973年   1篇
  1950年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Ancient DNA research has developed rapidly over the past few decades due to improvements in PCR and next‐generation sequencing (NGS) technologies, but challenges still exist. One major challenge in relation to ancient DNA research is to recover genuine endogenous ancient DNA sequences from raw sequencing data. This is often difficult due to degradation of ancient DNA and high levels of contamination, especially homologous contamination that has extremely similar genetic background with that of the real ancient DNA. In this study, we collected whole‐genome sequencing (WGS) data from 6 ancient samples to compare different mapping algorithms. To further explore more effective methods to separate endogenous DNA from homologous contaminations, we attempted to recover reads based on ancient DNA specific characteristics of deamination, depurination, and DNA fragmentation with different parameters. We propose a quick and improved pipeline for separating endogenous ancient DNA while simultaneously decreasing homologous contaminations to very low proportions. Our goal in this research was to develop useful recommendations for ancient DNA mapping and for separation of endogenous DNA to facilitate future studies of ancient DNA.  相似文献   
992.
The desert harvester ant Veromessor pergandei displays geographic variation in colony founding with queens initiating nests singly (haplometrosis) or in groups (pleometrosis). The transition from haplo‐ to pleometrotic founding is associated with lower rainfall. Numerous hypotheses have been proposed to explain the evolution of cooperative founding in this species, but the ultimate explanation remains unanswered. In laboratory experiments, water level was positively associated with survival, condition, and brood production by single queens. Queen survival also was positively influenced by water level and queen number in a two‐factor experiment. Water level also was a significant effect for three measures of queen condition, but queen number was not significant for any measure. Foundress queens excavated after two weeks of desiccating conditions were dehydrated compared to alate queens captured from their natal colony, indicating that desiccation can be a source of queen mortality. Long‐term monitoring in central Arizona, USA, documented that recruitment only occurred in four of 20 years. A discriminant analysis using rainfall as a predictor of recruitment correctly predicted recruitment in 17 of 20 years for total rainfall from January to June (the period for mating flights and establishment) and in 19 of 20 years for early plus late rainfall (January–March and April–June, respectively), often with a posterior probability > 0.90. Moreover, recruitment occurred only in years in which both early and late rainfall exceeded the long‐term mean. This result also was supported by the discriminant analysis predicting no recruitment when long‐term mean early and late rainfall were included as ungrouped periods. These data suggest that pleometrosis in V. pergandei evolved to enhance colony survival in areas with harsh abiotic (desiccating) conditions, facilitating colonization of habitats in which solitary queens could not establish even in wet years. This favorable‐year hypothesis supports enhanced worker production as the primary advantage of pleometrosis.  相似文献   
993.
We analyzed the global genetic variation pattern of Capsella bursa‐pastoris (Brassicaceae) as expressed in allozymic (within‐locus) diversity and isozymic (between‐locus) diversity. Results are based on a global sampling of more than 20,000 C. bursa‐pastoris individuals randomly taken from 1,469 natural provenances in the native and introduced range, covering a broad spectrum of the species’ geographic distribution. We evaluated data for population genetic parameters and F‐statistics, and Mantel tests and AMOVA were performed. Geographical distribution patterns of alleles and multilocus genotypes are shown in maps and tables. Genetic diversity of introduced populations is only moderately reduced in comparison with native populations. Global population structure was analyzed with structure, and the obtained cluster affiliation was tested independently with classification approaches and macroclimatic data using species distribution modeling. Analyses revealed two main clusters: one distributed predominantly in warm arid to semiarid climate regions and the other predominantly in more temperate humid to semihumid climate regions. We observed admixture between the two lineages predominantly in regions with intermediate humidity in both the native and non‐native ranges. The genetically derived clusters are strongly supported in macroclimatic data space. The worldwide distribution patterns of genetic variation in the range of C. bursa‐pastoris can be explained by intensive intra‐ and intercontinental migration, but environmental filtering due to climate preadaption seems also involved. Multiple independent introductions of genotypes from different source regions are obvious. “Endemic” genotypes might be the outcome of admixture or of de novo mutation. We conclude that today's successfully established Capsella genotypes were preadapted and found matching niche conditions in the colonized range parts.  相似文献   
994.
The paper aims to analyze a rare blood sample in Ganzhou City Hospital with CisAB subtype and explore a feasible pattern for blood typing of rare blood type patients, so as to ensure clinical transfusion safety. The routine serological methods were used for ABO forward and reverse blood typing and the fluorescence real-time PCR technique was used for sample genotyping. A human ABO blood group 6-7 exon sequencing kit was used for sequence analysis. The nucleic acid sequence of the sample was compared with reference sequences. The forward typing results demonstrated that the sample was ABw, RhD positive. The sample exhibited 4+ agglutination with anti-H and anti-AB antibodies. Reverse typing by microcolumn gel method showed an AB result, but the serum sample demonstrated weak agglutination with B cell under room temperature, 4 °C and 37 °C in saline when tested with tube method respectively. The serological results matched with the A2B3 serotype. The fluorescent real-time PCR genotyping results displayed A/O01. The sequence analysis demonstrated deletion of guanine in 261-position 467C>T (heterozygote) and 803G>T (heterozygote) mutation respectively. The mutation caused the A glycosyltransferase peptide chain to change from proline to leucine (P156L) at 156 and from glutamate to alanine (G268A) at 268. The result demonstrated that the sample''s genotype was CisAB01/O01. The mutation of glycosyltransferase coding gene leads to an abnormal serological reaction pattern. Only by combining the results of genetic analysis can we get the true sample blood type and better ensure the safety of clinical blood transfusion.  相似文献   
995.
The GPR120 gene (also known as FFAR4 or O3FAR1) encodes for a functional omega-3 fatty acid receptor/sensor that mediates potent insulin sensitizing effects by repressing macrophage-induced tissue inflammation. For its functional role, GPR120 could be considered a potential target gene in animal nutrigenetics. In this work we resequenced the porcine GPR120 gene by high throughput Ion Torrent semiconductor sequencing of amplified fragments obtained from 8 DNA pools derived, on the whole, from 153 pigs of different breeds/populations (two Italian Large White pools, Italian Duroc, Italian Landrace, Casertana, Pietrain, Meishan, and wild boars). Three single nucleotide polymorphisms (SNPs), two synonymous substitutions and one in the putative 3′-untranslated region (g.114765469C > T), were identified and their allele frequencies were estimated by sequencing reads count. The g.114765469C > T SNP was also genotyped by PCR-RFLP confirming estimated frequency in Italian Large White pools. Then, this SNP was analyzed in two Italian Large White cohorts using a selective genotyping approach based on extreme and divergent pigs for back fat thickness (BFT) estimated breeding value (EBV) and average daily gain (ADG) EBV. Significant differences of allele and genotype frequencies distribution was observed between the extreme ADG-EBV groups (P < 0.001) whereas this marker was not associated with BFT-EBV.  相似文献   
996.
Researchers reexamining the relationship between restoration science and practice report a continuing scientist‐practitioner gap. As a land manager with scientific training, I offer my perspective of the chasm and describe a restoration practice infused with as much science as the realities of limited budget and time allow. The coastal sage scrub (CSS) restoration project at Starr Ranch, a 1,585 ha Audubon preserve in southern California, combines non‐chemical invasive species control, restoration, and applied research. Our practices evolve from modified scientific approaches and the scientific literature. Results from experiments with non‐optimum replication (on effects of seed rates, soil tamping, and timing of planting) nonetheless had value for management decisions. A critical practice came from academic research that encouraged cost‐effective passive restoration. Our passive restoration monitoring data showed 28–100% total native cover after 3–5 years. Another published study found that restoration success in semiarid regions is dependent on rainfall, a finding vital for understanding active restoration monitoring results that showed a range of 0–88% total native cover at the end of the first season. Work progresses through a combination of applied research, a watchful eye on the scientific literature, and “ecological intuition” informed by the scientific literature and our own findings. I suggest that it is less critical for academic scientists to address the basic questions on technique that are helpful to land managers but rather advocate practitioner training in methods to test alternative strategies and long‐term monitoring.  相似文献   
997.
An accepted criterion for measuring the success of ecosystem restoration is the return of biodiversity relative to intact reference ecosystems. The emerging global carbon economy has made landscape‐scale restoration of severely degraded Portulacaria afra (spekboom)‐dominated subtropical thicket, by planting multiple rows of spekboom truncheons, a viable land‐use option. Although large amounts of carbon are sequestered when planting a monoculture of spekboom, it is unknown whether this is associated with the return of other thicket biodiversity components. We used available carbon stock data from degraded, restored, and intact stands at one site, and sampled carbon stocks at restored stands at another site in the same plant community. We also sampled plant community composition at both sites. The total carbon stock of the oldest (50 years) post‐restoration stand (250.8 ± 14 t C ha?1) approximated that of intact stands (245 t C ha?1) and we observed a general increase in carbon content with restoration age (71.4 ± 24 t C ha?1 after 35 and 167.9 ± 20 t C ha?1 after 50 years). A multiple correspondence analysis separated degraded stands from stands under restoration based on ground cover, floristic composition, and total carbon stock. Older post‐restoration and intact stands were clustered according to woody canopy recruit abundance. Our results suggest that spekboom is an ecosystem engineer that promotes spontaneous return of canopy species and other components of thicket biodiversity. The spekboom canopy creates a cooler micro‐climate and a dense litter layer, both likely to favor the recruitment of other canopy species.  相似文献   
998.
Land‐use legacies associated with agriculture, such as increased soil fertility and elevated soil pH, promote invasions by non‐native plant species on former agricultural lands. Restoring natural soil conditions (i.e. low fertility and low pH) may be an effective, long‐term method to control and reduce the abundance of non‐native and ruderal species that invade abandoned agricultural lands. In this study, we examined how soil manipulation treatments of lowering soil fertility with carbon additions and lowering soil pH by applying sulfur affect non‐native and ruderal native plant species abundance in two former citrus groves in central Florida. Non‐native plant biomass was removed by one of two methods (tilling or topsoil removal), and was combined with a soil amendment of sulfur, carbon, sulfur + carbon, or none. The biomass removal treatments significantly decreased non‐native abundance, with topsoil removal as the most effective. Carbon additions did not affect soil fertility or vegetation. Sulfur and sulfur + carbon additions significantly decreased soil pH in both groves for at least 1 year post‐treatment; however, we did not see a significant vegetation response. Overall, our results suggest that removing vegetation by tilling and topsoil removal is an effective method for reducing non‐target species cover. Although we did not see a response of vegetation to our treatments, we were able to restore the initial soil characteristics, which can be a first step toward complete restoration.  相似文献   
999.
Disturbed natural areas frequently experience invasion by introduced plant species that can reduce native biodiversity. Biological control can suppress these introduced species, but without restoration another introduced species can invade. Integration of biological control with concurrent revegetation can both aid in weed reduction via interspecific plant competition and establish a restored native plant community. This 3‐year study investigated an integrated approach to controlling the introduced annual Mile‐a‐minute weed (Persicaria perfoliata [L.] H. Gross [Polygonaceae]) using the biocontrol weevil Rhinoncomimus latipes Korotyaev (Coleoptera: Curculionidae) and restoration planting using a native seed mix. A fully factorial design tested weevils and seeding, separately and together, using insecticide to eliminate weevils. The weevils together with the native seed mix reduced P. perfoliata percent cover in 2009 and 2010, and peak seed cluster production in 2010, compared to the insecticide ? no seed control treatment. Persicaria perfoliata final dry biomass was reduced by 75% in 2010 and by 57% in 2011 in the weevils plus seed treatment compared to the control, with weevils having the greatest effect in 2010 and the seed treatment having the greatest impact in 2011. Results suggest an additive effect of biocontrol and seeding in suppressing P. perfoliata. Seeded treatments also developed the highest native plant species richness and diversity, comprised of spontaneous recolonization in addition to species from the seed mix. Results support the use of integrated management of this invasive weed, with suppression through biological control and native revegetation together helping prevent reinvasion while restoring native plant biodiversity.  相似文献   
1000.
Seeds of Indian ricegrass (Achnatherum hymenoides), a native bunchgrass common to sandy soils on arid western rangelands, are naturally dispersed by seed‐caching rodent species, particularly Dipodomys spp. (kangaroo rats). These animals cache large quantities of seeds when mature seeds are available on or beneath plants and recover most of their caches for consumption during the remainder of the year. Unrecovered seeds in caches account for the vast majority of Indian ricegrass seedling recruitment. We applied three different densities of white millet (Panicum miliaceum) seeds as “diversionary foods” to plots at three Great Basin study sites in an attempt to reduce rodents' over‐winter cache recovery so that more Indian ricegrass seeds would remain in soil seedbanks and potentially establish new seedlings. One year after diversionary seed application, a moderate level of Indian ricegrass seedling recruitment occurred at two of our study sites in western Nevada, although there was no recruitment at the third site in eastern California. At both Nevada sites, the number of Indian ricegrass seedlings sampled along transects was significantly greater on all plots treated with diversionary seeds than on non‐seeded control plots. However, the density of diversionary seeds applied to plots had a marginally non‐significant effect on seedling recruitment, and it was not correlated with recruitment patterns among plots. Results suggest that application of a diversionary seed type that is preferred by seed‐caching rodents provides a promising passive restoration strategy for target plant species that are dispersed by these rodents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号