首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   497篇
  免费   61篇
  国内免费   135篇
  693篇
  2024年   1篇
  2023年   13篇
  2022年   7篇
  2021年   12篇
  2020年   16篇
  2019年   28篇
  2018年   35篇
  2017年   34篇
  2016年   47篇
  2015年   27篇
  2014年   28篇
  2013年   34篇
  2012年   28篇
  2011年   22篇
  2010年   17篇
  2009年   22篇
  2008年   29篇
  2007年   31篇
  2006年   25篇
  2005年   19篇
  2004年   16篇
  2003年   19篇
  2002年   21篇
  2001年   15篇
  2000年   13篇
  1999年   9篇
  1998年   5篇
  1997年   9篇
  1996年   14篇
  1995年   13篇
  1994年   8篇
  1993年   3篇
  1992年   4篇
  1991年   7篇
  1990年   3篇
  1989年   7篇
  1988年   6篇
  1986年   4篇
  1985年   1篇
  1984年   9篇
  1983年   4篇
  1982年   7篇
  1981年   5篇
  1980年   4篇
  1979年   2篇
  1978年   4篇
  1977年   2篇
  1974年   2篇
  1973年   1篇
  1970年   1篇
排序方式: 共有693条查询结果,搜索用时 21 毫秒
71.
张霞  曹阳  陈峰 《微生物学通报》2023,50(3):1345-1353
通过“微生物学实验”课程多年来的混合式教学实践发现,学生的主动性是学习效果的核心要素。鉴于在以往的教学实践中,无论采用何种教学手段,总有部分学生的学习主动性不能得到体现。我们近年来采用轮流组长责任制下的任务驱动教学法,极大地调动了所有学生的学习动力。每位学生在担任组长工作时从课前任务、课堂执行、课后总结等方面都发挥了重要作用,而不担任组长时也会积极主动地配合组长工作。最终,实验课程学习成绩优秀率占比、体现素质能力培养的成绩分项都显著提升。同时,课程教学也收获了良好的学生认可和反馈。  相似文献   
72.
采用盆栽试验,研究了有机无机肥配施对麦-稻轮作系统中水稻氮素累积动态和土壤氮素供应动态的影响,并从微生物学角度探讨了有机无机肥协同提高水稻氮肥利用率的机制.结果表明:有机无机肥配施处理的土壤微生物生物量碳、氮和矿质态氮在水稻分蘖期前低于化肥处理,而在抽穗期至灌浆期显著高于其他处理.土壤氮素供应动态与水稻吸收利用氮素规律吻合程度最高,促进了水稻产量、生物量和氮素累积量的增加,显著提高了水稻的氮肥利用率.其主要机制是有机无机肥配施促进了土壤微生物繁殖,使其在水稻生育前期固持了较多的矿质氮,在水稻生育中、后期这些氮素逐渐被释放以供水稻吸收利用,较好地满足了水稻各阶段生长发育对氮素养分的需求.  相似文献   
73.
Global rice agriculture will be increasingly challenged by water scarcity, while at the same time changes in demand (e.g. changes in diets or increasing demand for biofuels) will feed back on agricultural practices. These factors are changing traditional cropping patterns from double‐rice cropping to the introduction of upland crops in the dry season. For a comprehensive assessment of greenhouse gas (GHG) balances, we measured methane (CH4)/nitrous oxide (N2O) emissions and agronomic parameters over 2.5 years in double‐rice cropping (R‐R) and paddy rice rotations diversified with either maize (R‐M) or aerobic rice (R‐A) in upland cultivation. Introduction of upland crops in the dry season reduced irrigation water use and CH4 emissions by 66–81% and 95–99%, respectively. Moreover, for practices including upland crops, CH4 emissions in the subsequent wet season with paddy rice were reduced by 54–60%. Although annual N2O emissions increased two‐ to threefold in the diversified systems, the strong reduction in CH4 led to a significantly lower (P < 0.05) annual GWP (CH4 + N2O) as compared to the traditional double‐rice cropping system. Measurements of soil organic carbon (SOC) contents before and 3 years after the introduction of upland crop rotations indicated a SOC loss for the R‐M system, while for the other systems SOC stocks were unaffected. This trend for R‐M systems needs to be followed as it has significant consequences not only for the GWP balance but also with regard to soil fertility. Economic assessment showed a similar gross profit span for R‐M and R‐R, while gross profits for R‐A were reduced as a consequence of lower productivity. Nevertheless, regarding a future increase in water scarcity, it can be expected that mixed lowland–upland systems will expand in SE Asia as water requirements were cut by more than half in both rotation systems with upland crops.  相似文献   
74.
刘星  邱慧珍  王蒂  张俊莲  沈其荣 《生态学报》2015,35(12):3938-3948
甘肃省中部沿黄灌区是西北地区乃至全国重要的加工型马铃薯生产基地,然而因集约化种植带来的连作障碍问题已经严重影响到当地马铃薯种植业的可持续发展。采用大田试验与PCR-DGGE(Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis)技术相结合的方法,并通过真菌的18S r DNA序列分析,评估轮作(未连作)和连作条件下马铃薯根际土壤真菌群落在组成结构上的差异,以期为甘肃省中部沿黄灌区马铃薯连作的土壤障碍机理研究提供新证据。结果表明,同轮作相比,连作显著降低了马铃薯块茎产量和植株生物量,并且随着连作年限的延长,连作障碍也愈加严重。长期连作(6a)也导致马铃薯根冠比显著增加和植株收获指数的显著下降。在根际土壤真菌的种群数量和多样性上,连作和轮作间无显著差异,但在群落组成结构上差异明显。真菌18S r DNA测序分析进一步表明,马铃薯连作较轮作相比增加了Fusarium sp.和Fusarium solani以及Verticillium dahliae的种群或个体数量,而这些真菌是导致马铃薯土传病害的主要致病菌类型。根际土壤真菌群落组成结构的改变特别是与土传病害有关的致病菌滋生可能是导致当地马铃薯连作障碍的重要原因。  相似文献   
75.
Short rotation plantations are often considered as holding vast potentials for future global bioenergy supply. In contrast to raising biomass harvests in forests, purpose‐grown biomass does not interfere with forest carbon (C) stocks. Provided that agricultural land can be diverted from food and feed production without impairing food security, energy plantations on current agricultural land appear as a beneficial option in terms of renewable, climate‐friendly energy supply. However, instead of supporting energy plantations, land could also be devoted to natural succession. It then acts as a long‐term C sink which also results in C benefits. We here compare the sink strength of natural succession on arable land with the C saving effects of bioenergy from plantations. Using geographically explicit data on global cropland distribution among climate and ecological zones, regionally specific C accumulation rates are calculated with IPCC default methods and values. C savings from bioenergy are given for a range of displacement factors (DFs), acknowledging the varying efficiency of bioenergy routes and technologies in fossil fuel displacement. A uniform spatial pattern is assumed for succession and bioenergy plantations, and the considered timeframes range from 20 to 100 years. For many parameter settings—in particular, longer timeframes and high DFs—bioenergy yields higher cumulative C savings than natural succession. Still, if woody biomass displaces liquid transport fuels or natural gas‐based electricity generation, natural succession is competitive or even superior for timeframes of 20–50 years. This finding has strong implications with climate and environmental policies: Freeing land for natural succession is a worthwhile low‐cost natural climate solution that has many co‐benefits for biodiversity and other ecosystem services. A considerable risk, however, is C stock losses (i.e., emissions) due to disturbances or land conversion at a later time.  相似文献   
76.
Describing natural selection on phenotypic traits under varying environmental conditions is essential for a quantitative assessment of the scale at which adaptation might occur and of the impact of environmental variability on evolution. Here we analyzed patterns of multivariate selection via fecundity and viability on three reproductive traits (laying date, clutch size, and egg weight) in a population of great tits (Parus major). We quantified selection under different environmental conditions using (1) local variation in breeding density and (2) distinct areas of the population's habitat. We found that selection gradients were generally stronger for fecundity than for viability selection. We also found correlational selection acting on the combination of laying date and clutch size; this is the first documented evidence of such selection acting on these two traits in a passerine bird. Our analyses showed that both local breeding density and habitat significantly influenced selection patterns, hence favoring different patterns of reproductive investment at a small-scale relative to typical dispersal distances in this species. Canonical rotation of the nonlinear selection matrices yielded similar conclusions as traditional nonlinear selection analyses, and also showed that the main axes of selection and fitness surfaces varied over space within the population. Our results emphasize the importance of quantifying different forms of selection, and of including variation in environmental conditions at small scales to gain a better understanding of potential evolutionary dynamics in wild populations. This study suggests that the fitness landscape for this species is relatively rugged at scales relevant to the life histories of individual birds and their close relatives.  相似文献   
77.
Weevil (Curculionidae, Coleoptera) species richness and composition were investigated and compared among larch [Larix kaempferi (Lamb.) Carriére] plantations, secondary forests, and old-growth forests in the central mountainous region of Japan. In addition, to assess the effects of forest-management practices, namely thinning and long-rotation logging schedules (long rotation), the weevil assemblages of recently thinned middle-aged and long-rotated larch plantations were compared with those of middle-aged larch plantations. Malaise traps were set in 44 stands of these forest types, and weevils were separated and identified. Several environmental factors other than forest type were also examined. Weevil species richness and diversity indices [Shannon-Wiener diversity index (H) and Simpsons index of diversity (D)] were higher in the secondary forest than in the larch plantation. Because of its wide distribution and higher weevil species richness, the secondary forest contributed to maintaining weevil diversity in this region. Old-growth forest had higher diversity indices (H and D) than did the larch plantation. The secondary forest had the highest number of species in total. Though the number of individuals was the highest in larch plantation, species richness, H and D of the plantation were generally low. Weevil community structure and species composition differed among the three forest types, but the difference in weevil composition between the larch plantation and the other two forest types was the largest. Forest type is probably the most important factor for determining the differences in weevil assemblage, and further, both dominant tree type (coniferous trees versus broad-leaved trees) and the number of mature tree species seem to be important factors for weevil species composition. Among forest management practices, long rotation caused diversity indices (H and D) to increase while thinning appeared to cause only minor changes in the weevil assemblages. Because species richness and species composition of Curculionidae well reflected the differences in forest types and some other environmental factors investigated, this family seems suitable for diversity research in forests. Further research on biodiversity with the use of this family should, therefore, be expected.  相似文献   
78.
Aligned vegetal subcortical microtubules in fertilized Xenopus eggs mediate the "cortical rotation", a translocation of the vegetal cortex and of dorsalizing factors toward the egg equator. Kinesin-related protein (KRP) function is essential for the cortical rotation, and dynein has been implicated indirectly; however, the role of neither microtubule motor protein family is understood. We examined the consequence of inhibiting dynein--dynactin-based transport by microinjection of excess dynamitin beneath the vegetal egg surface. Dynamitin introduced before the cortical rotation prevented formation of the subcortical array, blocking microtubule incorporation from deeper regions. In contrast, dynamitin injected after the microtubule array was fully established did not block cortical translocation, unlike inhibitory-KRP antibodies. During an early phase of cortical rotation, when microtubules showed a distinctive wavy organization, dynamitin disrupted microtubule alignment and perturbed cortical movement. These findings indicate that dynein is required for formation and early maintenance of the vegetal microtubule array, while KRPs are largely responsible for displacing the cortex once the microtubule tracks are established. Consistent with this model for the cortical rotation, photobleach analysis revealed both microtubules that translocated with the vegetal cytoplasm relative to the cortex, and ones that moved with the cortex relative to the cytoplasm.  相似文献   
79.
The diversity of soil microbial communities as affected by continuous cucumber cropping and alternative rotations under protected cultivation were evaluated using community level physiological profiles (CLPP) and random amplified polymorphic DNA (RAPD) analysis. The soils were selected from six cucumber cropping systems, which cover two cropping practices (rotation and continuous cropping) and a wide spectrum for cucumber cropping history under protected cultivation. Shannon–Weaver index and multivariate analysis were performed to characterize variations in soil microbial communities. Both CLPP and RAPD techniques demonstrated that cropping systems and plastic-greenhouse cultivation could considerably affect soil microbial functional diversity and DNA sequence diversity. The open-field soil had the highest Shannon–Weaver index (3.27 for CLPP and 1.50 for RAPD), whereas the lowest value occurred in the 7-year continuous protected cultivation soil (3.27 for CLPP and 1.50 for RAPD). The results demonstrated that continuous plastic-greenhouse cultivation and management can cause the reduction in the species diversity of the biota. Higher Shannon–Weaver index and coefficients of DNA sequence similarity were found in soils under rotation than those under continuous cropping. Cluster analysis also indicated that microbial community profiles of continuous cultivation soils were different from profiles of rotation soils. The reduction in diversity of microbial communities found in continuous cultivation soils as compared with rotation soils might be due to the differences in the quantity, quality and distribution of soil organic matter. Section Editor: D. E. Crowley  相似文献   
80.
Rennebaum S  Caflisch A 《Proteins》2012,80(8):1998-2008
As part of the cytoskeleton, actin is essential for the morphology, motility, and division of eukaryotic cells. Recent X-ray fiber diffraction studies have shown that the conformation of monomeric actin is flattened upon incorporation into the filament by a relative rotation of its two major domains. The antiproliferative activity of latrunculin, a macrolide toxin produced by sponges, seems to be related to its binding to monomeric actin and inhibition of polymerization. Yet, the mechanism of inhibition is not known in detail. Here, multiple explicit water molecular dynamics simulations show that latrunculin binding hinders the conformational transition related to actin polymerization. In particular, the presence of latrunculin at the interface of the two major domains of monomeric actin reduces the correlated displacement of Domain 2 with respect to Domain 1. Moreover, higher rotational flexibility between the two major domains is observed in the absence of ATP as compared to ATP-bound actin, offering a possible explanation as to why actin polymerizes more favorably in the absence of nucleotides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号