首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   5篇
  国内免费   13篇
  2017年   4篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1995年   2篇
  1990年   1篇
排序方式: 共有38条查询结果,搜索用时 15 毫秒
21.
研究了浑善达克沙地 4~ 10月份土壤含水量变动情况和冰草种子萌发、出苗和幼苗生长对土壤含水量的响应。结果表明 ,4月下旬至 5月上中旬的土壤含水量对冰草种子萌发、出苗和定居极为关键。控制条件下 ,冰草种子萌发和出苗的最适土壤含水量范围是 12 %~ 2 0 % ,幼苗生长的最适土壤含水量是 12 %。当土壤含水量低于 3% ,冰草种子不能萌发 ,土壤含水量低于 6 %时 ,幼苗不能出土并定居。当土壤含水量达到 16 %时 ,冰草幼苗生物量有所下降。在 6 %~ 8%的土壤含水量条件下 ,植株将更多的生物量投资于根的生长  相似文献   
22.
李立会  赵华 《遗传学报》1998,25(6):538-544
为了建立一套小麦-冰草异源二体附加系,利用形态学、细胞学、同工酶和原位杂交方法,对普通小麦品种Fukuho×冰草Z559杂交组合所衍生的BC2到BC5世代的866株进行了细胞学分析和外源染色质的检测。结果表明,(1)形态学和细胞学检测是其他检测方法的基础;(2)在建立小麦-冰草异源二体附加系的研究中,异源单体和双单体附加系并非良好的基础材料;(3)从BC2到BC5,随着回交世代的提高产生异源二体附加系的频率提高(0→4.12%);(4)从染色体结构呈22Ⅱ+nⅠ的材料中不仅比较容易衍生出异源二体附加系而且是相异;(5)首次获得了11个在表型性状上有明显差异的小麦-冰草异源二体附加系。  相似文献   
23.
所谓“黄霉菌”是茯砖茶发酵中的益菌。它实际上是散囊菌属产生的黄色闭囊壳。优势种经鉴定为冠突散囊菌[Eurotium cristatum(Raper & Fennell)Malloch & cain],它的无性型是针刺曲霉(Aspergillus spiculosus Blaser),异名是冠突曲霉(A.cristatus Raper &Fennell)。文中还对有关该菌的命名问题和在我国的分布作了讨论。  相似文献   
24.
Non‐native crested wheatgrasses (Agropyron cristatum and A. desertorum) were used historically within the Great Basin for the purpose of competing with weed species and increasing livestock forage. These species continue to be used in some areas, especially after wildfires occurring in low elevation/precipitation, formerly Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis)/herbaceous communities. Seeding native species in these sites is often unsuccessful, and lack of establishment results in invasion and site dominance by exotic annuals. However, crested wheatgrass often forms dense monocultures that interfere competitively with the establishment of desirable native vegetation and do not provide the plant structure and habitat diversity for wildlife species equivalent to native‐dominated sagebrush plant communities. During a 5‐year study, we conducted trials to evaluate chemical and mechanical methods for reducing crested wheatgrass and the effectiveness of seeding native species into these sites after crested wheatgrass suppression. We determined that discing treatments were ineffective in reducing crested wheatgrass cover and even increased crested wheatgrass density in some cases. Glyphosate treatments initially reduced crested wheatgrass cover, but weeds increased in many treated plots and seeded species diminished over time as crested wheatgrass recovered. We concluded that, although increases in native species could possibly be obtained by repeating crested wheatgrass control treatments, reducing crested wheatgrass opens a window for invasion by exotic weed species.  相似文献   
25.
Peatlands in Australia and New Zealand are composed mainly of Restionaceous and Cyperaceous peats, although Sphagnum peat is common in wetter climates (Mean Annual Precipitation > 1,000 mm) and at higher altitudes (>1,000 m). Experimental trials in two contrasting peatland types—fire‐damaged Sphagnum peatlands in the Australian Alps and cutover restiad bogs in lowland New Zealand—revealed similar approaches to peatland restoration. Hydrological restoration and rehydration of drying peats involved blocking drainage ditches to raise water tables or, additionally in burnt Sphagnum peatlands, peat‐trenching, and the use of sterilized straw bales to form semipermanent “dam walls” and barriers to spread and slow surface water movement. Recovery to the predisturbance vegetation community was most successful once protective microclimates had been established, either artificially or naturally. Specifically, horizontally laid shadecloth resulted in Sphagnum cristatum regeneration rates and biomass production 3–4 times that of unshaded vegetation (Australia), and early successional nurse shrubs facilitated establishment of Sporadanthus ferrugineus (New Zealand) within 2–3 years. On severely burnt or cutover sites, a patch dynamic approach using transplants of Sphagnum or creation of restiad peat “islands” markedly improved vegetation recovery. In New Zealand, this approach has been scaled up to whole mine‐site restoration, in which the newly vegetated islands provide habitat and seed sources for plants and invertebrates to spread onto surrounding areas. Although a vegetation cover can be established relatively rapidly in both peatland types, restoration of invertebrate communities, ecosystem processes, and peat hydrological function and accumulation may take many decades.  相似文献   
26.
The present study was conducted to examine photosynthetic characteristics of three dominant grass species (Agropyron cristatum, Leymus chinensis, and Cleistogenes squarrosa) and their responses to burning and nitrogen fertilization in a semiarid grassland in northern China. Photosynthetic rate (Pn), stomatal conductance (gs), and water use efficiency (WUE) showed strong temporal variability over the growing season. C. squarrosa showed a significantly higher Pn and WUE than A. cristatum and L. chinensis. Burning stimulated Pn of A. cristatum and L. chinensis by 24-59% (P<0.05) in the early growing season, but not during other time periods. Light-saturated photosynthetic rate (φmax) in A. cristatum C. squarrosa. The burning-induced changes in soil moisture could explain 51% (P=0.01) of the burning-induced changes The stimulation of Pn under N fertilization was mainly observed in the early growing season when the soil extractable N content was significantly higher in the fertilized plots. The N fertilization-induced changes in soil extractable N content could explain 66% (P=0.001) of the changes in Pn, under N fertilization. The photosynthetic responses of the three species indicate that burning and N fertilization will potentially change the community structure and ecosystem productivity in the semiarid grasslands of northern China.  相似文献   
27.
在内蒙古自治区多伦县中科院植物所生态恢复试验站,选择优势种克氏针茅(Stipa krylovii) 和冰草(Agropyron cristatum),使用Li-6400便携式光合测定系统观测光合生理生态特征的生长季变化(DOY155-265)。结果表明:水分是本区域植物生长的最重要的限制因子。冰草与针茅受5cm和20cm表层土壤含水率的影响较大。水分是本区域植物生长的最重要的限制因子。冰草与针茅受5cm和20cm表层土壤含水率的影响较大。植物的光合速率和蒸腾速率受自身的气孔导度限制,光合速率和蒸腾速率随气孔导度的增大而增大,冰草这一特征较为明显,即冰草对环境响应更为敏感。作为优势种冰草和针茅的生态适应策略并不相同,针对当地现有环境条件,针茅更具生存优势。随着全球环境变化,干旱胁迫对草原生态系统产生了重大影响,使得这些地区成为响应环境变化的敏感区域,通过对半干旱温带草原优势种克氏针茅和冰草对光、水等环境资源的利用及之间的关系研究,有助于我们对全球环境变化提出本区域合适的应对策略。  相似文献   
28.
Responses of caryopsis germination, seedling emergence, and development of Agropyron cristatum (L.) Gaertn. (Gramineae) and Bromus inermis Leyss. (Gramineae), two dominant perennial grasses in the Otindag Sandland of China, to different sand water content (SWC; 1%, 2%, 3%, 4%, 6%, 8%, 12%,16%, and 20%) were studied comparatively. The results showed that the germination responses of the two grasses to SWC were similar (i.e. caryopses could not germinate when the SWC was below 3%; at SWC ranging from 3% to 12%, the higher the SWC, the higher the germination percentage; and at a SWC of 12 %, germination reached similarly high percentages). At a sand burial depth of 0.5 cm, the threshold of SWC for seedling emergence was 6% forA. cristatum and 8% forB. inermis; at 12%-20% SWC, the seedling emergence of both species reached similarly high percentages. The seedling growth responses of these two species to SWC gradients were different. For A. cristatum, the biomass of seedlings increased with SWC from 6% to 12%, and decreased with SWC from 12% to 20%. For B. inermis, the biomass of seedlings always increased with SWC from 8% to 20%. The results also showed that the seedlings of both species allocated more biomass to the roots with decreases in SWC. The SWC changes from April to October in natural microhabitats of both species suggested that the SWC may play an important role in caryopsis germination,seedling emergence, and the growth characteristics of the two grasses. The responses of caryopsis germination, seedling emergence, and the growth characteristics of these two species to SWC may determine their distribution patterns in the Otindag Sandland.  相似文献   
29.
为寻找优质黄色素生产资源及研究其在不同条件下的稳定性,以冠突散囊菌(Eurotium cristatum)为材料,利用有机溶剂辅助超声波破碎等方法从固体平板和液体培养的菌丝体中提取黄色素,并分别研究了光、温度等理化因子对该色素的影响。结果表明,采用有机溶剂辅助超声波等方法成功提取出黄色素;该色素耐受日光灯光、室内散射光,不耐阳光和紫外光;耐酸,不耐碱;对温度敏感。各种金属离子对该色素有不同程度的影响;磷酸的破坏性显著;H2O2、NaHSO3对该色素有较强的破坏力;柠檬酸有一定的破坏作用;同等条件下,苯甲酸钠的破坏大于山梨酸钾;EDTA-Na2和Vc有一定的护色作用;糖类、NaCl、草酸和乳酸几乎无影响。  相似文献   
30.
Responses of caryopsis germination, seedling emergence, and development of Agropyron cristatum (L.) Gaertn. (Gramineae) and Bromus inermis Leyss. (Gramineae), two dominant perennial grasses in the Otindag Sandland of China, to different sand water content (SWC; 1%, 2%, 3%, 4%, 6%, 8%, 12%, 16%, and 20%) were studied comparatively. The results showed that the germination responses of the two grasses to SWC were similar (i.e. caryopses could not germinate when the SWC was below 3%; at SWC ranging from 3% to 12%, the higher the SWC, the higher the germination percentage; and at a SWC of 12%-20%, germination reached similarly high percentages). At a sand burial depth of 0.5 cm, the threshold of SWC for seedling emergence was 6% forA. cristatum and 8% forB. inermis; at 12%-20% SWC, the seedling emergence of both species reached similarly high percentages. The seedling growth responses of these two species to SWC gradients were different. For A. cristatum, the biomass of seedlings increased with SWC from 6% to 12%, and decreased with SWC from 12% to 20%. For B. inermis, the biomass of seedlings always increased with SWC from 8% to 20%. The results also showed that the seedlings of both species allocated more biomass to the roots with decreases in SWC. The SWC changes from April to October in natural microhabitats of both species suggested that the SWC may play an important role in caryopsis germination, seedling emergence, and the growth characteristics of the two grasses. The responses of caryopsis germination, seedling emergence, and the growth characteristics of these two species to SWC may determine their distribution pattems in the Otindag Sandland.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号