首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4070篇
  免费   242篇
  国内免费   944篇
  2023年   39篇
  2022年   42篇
  2021年   88篇
  2020年   103篇
  2019年   84篇
  2018年   92篇
  2017年   103篇
  2016年   135篇
  2015年   120篇
  2014年   135篇
  2013年   243篇
  2012年   142篇
  2011年   179篇
  2010年   134篇
  2009年   180篇
  2008年   190篇
  2007年   198篇
  2006年   216篇
  2005年   209篇
  2004年   216篇
  2003年   208篇
  2002年   204篇
  2001年   215篇
  2000年   190篇
  1999年   181篇
  1998年   114篇
  1997年   123篇
  1996年   111篇
  1995年   108篇
  1994年   103篇
  1993年   122篇
  1992年   88篇
  1991年   99篇
  1990年   71篇
  1989年   73篇
  1988年   71篇
  1987年   40篇
  1986年   32篇
  1985年   45篇
  1984年   37篇
  1983年   20篇
  1982年   18篇
  1981年   22篇
  1980年   22篇
  1979年   19篇
  1978年   15篇
  1977年   13篇
  1976年   12篇
  1975年   10篇
  1974年   10篇
排序方式: 共有5256条查询结果,搜索用时 15 毫秒
161.
Plants experience a number of limiting factors, as drought and heat, which are often coinciding stress factors in natural environment. This study evaluated the changes in mesophyll cell ultrastructure in the leaves of two varieties of winter wheat (Triticum aestivum L.), differing in their drought tolerance, under individual or combined drought and heat treatment. Although the individual stress factors affected leaf ultrastructure, the damaging effect of the combined drought and heat was more pronounced and manifested certain differences between genotypes. Chloroplasts and mitochondria were affected in a variety-specific manner under all adverse treatments. The organelles of the drought-tolerant Katya were better preserved than those in the sensitive variety Sadovo. Leaf ultrastructure can be considered as one of the important characteristics in the evaluation of the drought susceptibility of different wheat varieties.  相似文献   
162.
Many over-wintering plants, through vernalization, overcome a block to flowering and thus acquire competence to flower in the following spring after experiencing prolonged cold exposure or winter cold. The vernalization pathways in different angiosperm lineages appear to have convergently evolved to adapt to temperate climates. Molecular and epigenetic mechanisms for vernalization regulation have been well studied in the crucifer model plant Arabidopsis thaliana.Here, we review recent progresses on the vernalization pathway in Arabidopsis. In addition, we summarize current molecular and genetic understandings of vernalization regulation in temperate grasses including wheat and Brachypodium, two monocots from Pooideae, followed by a brief discussion on divergence of the vernalization pathways between Brassicaceae and Pooideae.  相似文献   
163.
Slow-release urea (SRU) can substitute dietary protein sources in the diet of feedlotting ruminant species. However, different SRU structures show varying results of productive performance. This study was conducted to investigate the effect of different sources of nitrogen on performance, blood parameter, ruminal fermentation and relative population of rumen microorganisms in male Mehraban lambs. Thirty-five male lambs with an average initial BW of 34.7 ± 1.8 kg were assigned randomly to five treatments. Diets consisted of concentrate mixture and mineral and vitamin supplements plus (1) alfalfa and soybean meal, (2) wheat straw and soybean meal, (3) wheat straw and urea, (4) wheat straw and Optigen® (a commercial SRU supplement) and (5) wheat straw and SRU produced in the laboratory. No statistical difference was observed in animal performance and DM intake among treatments. The mean value of ruminal pH and ammonia was higher (P < 0.05) for the SRU diet compared with WU diet. The difference in pH is likely to be due to the higher ammonia level as VFAs concentrations were unchanged. The level of blood urea nitrogen (BUN) was different among treatments (P = 0.065). The highest concentration of BUN was recorded in Optigen diet (183.1 mg/l), whereas the lowest value was recorded in wheat straw-soybean meal diet (147 mg/l). The amount of albumin and total protein was not affected by the treatments. The relative population of total protozoa, Fibrobacter succinogenes, Ruminococcus flavefaciens and Ruminococcus albus in the SRU treatment was higher (P < 0.01) than that in urea treatment at 3 h post-feeding. During the period of lack of high-quality forage and in order to reduce dietary costs, low-quality forage with urea sources can be used in the diet. Results of microbial populations revealed that SRU can be used as a nitrogen source which can sustainably provide nitrogen for rumen microorganism without negative effects on the performance of feedlotting lambs.  相似文献   
164.
Yield development of agricultural crops over time is not merely the result of genetic and agronomic factors, but also the outcome of a complex interaction between climatic and site‐specific soil conditions. However, the influence of past climatic changes on yield trends remains unclear, particularly under consideration of different soil conditions. In this study, we determine the effects of single agrometeorological factors on the evolution of German winter wheat yields between 1958 and 2015 from 298 published nitrogen (N)‐fertilization experiments. For this purpose, we separate climatic from genetic and agronomic yield effects using linear mixed effect models and estimate the climatic influence based on a coefficient of determination for these models. We found earlier occurrence of wheat growth stages, and shortened development phases except for the phase of stem elongation. Agrometeorological factors are defined as climate covariates related to the growth of winter wheat. Our results indicate a general and strong effect of agroclimatic changes on yield development, in particular due to increasing mean temperatures and heat stress events during the grain‐filling period. Except for heat stress days with more than 31°C, yields at sites with higher yield potential were less prone to adverse weather effects than at sites with lower yield potential. Our data furthermore reveal that a potential yield levelling, as found for many West‐European countries, predominantly occurred at sites with relatively low yield potential and about one decade earlier (mid‐1980s) compared to averaged yield data for the whole of Germany. Interestingly, effects related to high precipitation events were less relevant than temperature‐related effects and became relevant particularly during the vegetative growth phase. Overall, this study emphasizes the sensitivity of yield productivity to past climatic conditions, under consideration of regional differences, and underlines the necessity of finding adaptation strategies for food production under ongoing and expected climate change.  相似文献   
165.
166.
167.
168.
169.
Abstract

Aspergillus flavipes FP-500 is a Mexican native strain that has been reported as a good producer of xylanases and pectinases; therefore, it promises a strong impact on biotechnology. To provide an overview of protein secretion by A. flavipes, we carried out a comparative proteome analysis of extracellular proteins in liquid cultures with two heterogeneous agro-industrial residues; corn cob (CC) and wheat bran (WB), as carbon sources. Extracellular proteins obtained from both cultures were identified using MS/MS spectrometry. We identified 134 proteins, which were classified into four groups: glycosyl hydrolases (GH), esterases/proteases, miscellaneous proteins, and unidentified proteins. Around 50% of the total proteins identified were GH such as xylanases, β-xylosidases, β-galactosidases, cellulolytic enzymes like β-glucosidase, endoglucanases, and cellobiohydrolases. From this family, a core of 22 (16%) of the proteins identified were found in both substrates, CC and WB, whereas 30% and 54% were unique for CC and WB, respectively. In the esterases/proteases group, proteases, lipases and esterases like feruloylesterases, and acetyl-xylanesterase were identified. Proteins with diverse functions such as monophosphate dehydrogenase or N-acetylglucosaminidase were present. Here, we present strong evidences indicating that the composition and heterogeneity of the used carbon source determine the specific set of protein secreted by the fungus.  相似文献   
170.
The shift from straw incorporation to biofuel production entails emissions from production, changes in soil organic carbon (SOC) and through the provision of (co‐)products and entailed displacement effects. This paper analyses changes in greenhouse gas (GHG) emissions arising from the shift from straw incorporation to biomethane and bioethanol production. The biomethane concept comprises comminution, anaerobic digestion and amine washing. It additionally provides an organic fertilizer. Bioethanol production comprises energetic use of lignin, steam explosion, enzymatic hydrolysis and co‐fermentation. Additionally, feed is provided. A detailed consequential GHG balance with in‐depth focus on the time dependency of emissions is conducted: (a) the change in the atmospheric load of emissions arising from the change in the temporal occurrence of emissions comparing two steady states (before the shift and once a new steady state has established); and (b) the annual change in overall emissions over time starting from the shift are assessed. The shift from straw incorporation to biomethane production results in net changes in GHG emissions of (a) ?979 (?436 to ?1,654) and (b) ?955 (?220 to ?1,623) kg CO2‐eq. per tdry matter straw converted to biomethane (minimum and maximum). The shift to bioethanol production results in net changes of (a) ?409 (?107 to ?610) and (b) ?361 (57 to ?603) kg CO2‐eq. per tdry matter straw converted to bioethanol. If the atmospheric load of emissions arising from different timing of emissions is neglected in case (a), the change in GHG emissions differs by up to 54%. Case (b) reveals carbon payback times of 0 (0–49) and 19 (1–100) years in case of biomethane and bioethanol production, respectively. These results demonstrate that the detailed inclusion of temporal aspects into GHG balances is required to get a comprehensive understanding of changes in GHG emissions induced by the introduction of advanced biofuels from agricultural residues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号