首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   270篇
  免费   46篇
  国内免费   37篇
  2024年   3篇
  2023年   8篇
  2022年   7篇
  2021年   12篇
  2020年   15篇
  2019年   23篇
  2018年   14篇
  2017年   17篇
  2016年   19篇
  2015年   17篇
  2014年   14篇
  2013年   33篇
  2012年   15篇
  2011年   15篇
  2010年   5篇
  2009年   14篇
  2008年   13篇
  2007年   15篇
  2006年   6篇
  2005年   13篇
  2004年   9篇
  2003年   7篇
  2002年   6篇
  2001年   8篇
  2000年   2篇
  1999年   8篇
  1998年   7篇
  1997年   4篇
  1996年   5篇
  1995年   2篇
  1994年   5篇
  1993年   3篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1979年   1篇
排序方式: 共有353条查询结果,搜索用时 15 毫秒
141.
To understand population dynamics it is necessary to understand vital rates, which may be affected by a wide range of factors including environmental variables such as weather. Weather conditions can affect birds’ vital rates directly through increased mortality due to impaired conditions, or indirectly via changes in body condition and/or behaviour. Most understanding of direct and indirect effects of weather comes from studies of breeding birds, whereas the situation in non‐breeding periods is less clear. Here, we analysed annual survival of non‐breeding Mallard Anas platyrhynchos, the most hunted waterfowl species in Europe, and assessed whether survival is related directly to winter harshness and/or indirectly via changes in winter recovery distributions. Recovery data on Mallards, initially marked in southeast Sweden, were analysed with an information‐theoretic approach using program mark . Over 10 000 Mallards were marked in two time periods, 1964–1982 and 2002–2008, of which 13.3 and 4.7%, respectively, were later recovered. Mallards had lower annual survival in the early trapping period (0.58–0.63) than in the later period (0.69–0.71), with no clear effects of sex, age or year. Within each study period, winter harshness did not directly correlate with survival. However, milder winters may have contributed indirectly to higher survival in the second period, as winter harshness data were correlated with the distances to recovery positions for females, and also because winter recovery areas have shifted northeast during the past decades, possibly indicating a shortened migratory distance. Migration is costly, and there is therefore a likely linkage between migration behaviour and survival of dabbling ducks, in which direct as well as indirect effects of winter harshness may play a role. Other factors, such as hunting pressure, are also likely to have changed in the past decades, and may also have contributed to improved survival of Mallards in northwest Europe.  相似文献   
142.
Abstract Aim An analysis is presented to examine whether variation in breeding waterfowl estimates can be explained by weather patterns prior to annual surveys. Location The location of the study is north‐western Ontario, Canada. Methods Annual, systematic survey data for breeding waterfowl are available from the 1950s to the present for north‐western Ontario. Regional monthly climate data for this area were compiled using weather data derived from interpolated annual climate surfaces. These data were analysed using stepwise multiple linear regression for each species and for waterfowl functional groups to assess whether monthly climate data accounted for some of the variation in waterfowl numbers. Results For all dabbling ducks pooled, 12% of the variation in annual abundance was explained by April temperatures, with more dabbling ducks observed in years when April was relatively cool. For diving ducks, 23% of the variation in pooled abundance was explained by April temperatures and February precipitation, where more diving ducks were observed in years when February had relatively less precipitation and April was cool. Patterns for individual species varied. Main conclusions Mean monthly weather data for months prior to surveys explained some of the variation in numbers of waterfowl observed in annual surveys. This suggests that future incorporation of weather data into waterfowl population models may help refine population estimates.  相似文献   
143.
144.
Natural hazards are naturally occurring physical events that can impact human welfare both directly and indirectly, via shocks to ecosystems and the services they provide. Animal‐mediated pollination is critical for sustaining agricultural economies and biodiversity, yet stands to lose both from present exposure to natural hazards, and future climate‐driven shifts in their distribution, frequency, and intensity. In contrast to the depth of knowledge available for anthropogenic‐related threats, our understanding of how naturally occurring extreme events impact pollinators and pollination has not yet been synthesized. We performed a systematic review and meta‐analysis to examine the potential impacts of natural hazards on pollinators and pollination in natural and cultivated systems. From a total of 117 studies (74% of which were observational), we found evidence of community and population‐level impacts to plants and pollinators from seven hazard types, including climatological (extreme heat, fire, drought), hydrological (flooding), meteorological (hurricanes), and geophysical (volcanic activity, tsunamis). Plant and pollinator response depended on the type of natural hazard and level of biological organization observed; 19% of cases reported no significant impact, whereas the majority of hazards held consistent negative impacts. However, the effects of fire were mixed, but taxa specific; meta‐analysis revealed that bee abundance and species richness tended to increase in response to fire, differing significantly from the mainly negative response of Lepidoptera. Building from this synthesis, we highlight important future directions for pollination‐focused natural hazard research, including the need to: (a) advance climate change research beyond static “mean‐level” changes by better incorporating “shock” events; (b) identify impacts at higher levels of organization, including ecological networks and co‐evolutionary history; and (c) address the notable gap in crop pollination services research—particularly in developing regions of the world. We conclude by discussing implications for safeguarding pollination services in the face of global climate change.  相似文献   
145.
ENSO事件影响中国的气候和森林火险天气,研究ENSO事件对中国各植被区火险天气的影响对于提高森林火险预报准确性有科学和实践意义。利用1951—2016年中国地面国际交换站气候资料的日值数据集(V3.0)数据计算每日的森林火险天气指数(FWI),根据MODIS过火区产品计算各植被区2001—2016年的森林过火面积,分别按事件情景(弱、中、强和超强厄尔尼诺事件以及弱、中和强拉尼娜事件)统计各植被区对应的火险期气温、降水、FWI和过火面积。结果表明: 1950—2016年,共发生19次厄尔尼诺事件和14次拉尼娜事件。受强或超强厄尔尼诺事件影响,西北地区春季火险期的日均最高气温明显升高,而中温带半干旱草原区春季火险期的日均最高气温在中厄尔尼诺年显著降低。厄尔尼诺年,南方和西南林区火险期的降水量一般会增加,中、低强度的拉尼娜事件会减少大部分区域的火险期降水量,但强拉尼娜事件导致大部分林区火险期的降水量增加。弱厄尔尼诺事件导致南方林区FWI降低;强或超强厄尔尼诺事件导致南方和西南林区的FWI有所降低,而北方林区的FWI有所升高。ENSO事件对各植被区FWI的影响存在显著的空间差异性。2001—2016年,当火险期的季节火险严重程度(SSR)显著变化时,暖温带湿润/半湿润地区落叶阔叶林区、中北亚热带湿润地区阔叶林区和热带南亚热带湿润地区阔叶林区的过火面积与SSR的变化一致,其他区域的过火面积受ENSO事件的影响不明显。  相似文献   
146.
Airborne fungal spores are known carriers of allergen. Correlations between spore counts and allergen concentrations are poor. It is known that germination increases allergen release, implicating spore viability as a determinant of allergen release. During aerial dispersal, spores can be exposed to prolonged periods of ultraviolet (UV) light which can reduce viability of spores. We examined the relation between spore viability and allergen release in two experiments: firstly spores from culture were treated with a UV wavelength of 254?nm (not present in sunlight reaching the earth's surface) or autoclaved, and secondly, spores were exposed to simulated sunlight over three days. In both studies viability was measured (by germination on agar and by metabolic activity with nitro-blue tetrazolium vital stain) and allergen release by the Halogen immunoassay. The UV light reduced the proportion of spores able to germinate but did not affect metabolic activity or allergen release. Autoclaving reduced the proportion of spores releasing allergen by half (p<0.0001). Three days' exposure to simulated sunlight correlated negatively with spore germination and metabolic activity (p<0.0001), but did not affect allergen release (p=0.799). In conclusion, simulated sunlight reduced the metabolic activity and germinability of spores however the proportion releasing allergen remained unaffected. These findings suggest that spore counts may reflect allergen concentrations in the air if spores are dead or dormant. The contribution of viable spores to concentrations of airborne allergen, as well as the role of germination in allergen delivery to the respiratory tract, remains to be resolved.  相似文献   
147.
When students conduct their own scientific research, they gain a better understanding of inquiry and the work that scientists do than they do from merely reading a book or performing a contrived experiment. Conducting weather studies is exciting and relatively simple research for students to perform. By collecting and analyzing data, students gain an accurate view of the scientific process in addition to real-world experience, as they face challenging setbacks and make unexpected discoveries along the way.  相似文献   
148.
149.
李杨  杨子祥  陈晓鸣  刘平  唐翊峰 《生态学报》2013,33(9):2825-2834
2009-2011年,在四川峨眉对大棚模拟条件下角倍蚜春季的迁飞数量及其与气象因子的关系进行观察分析,结果表明春迁蚜的迁飞活动与天气条件密切相关,在迁飞期内,当日平均气温≥9℃、最高气温≥13℃、平均相对湿度≤80%,春迁蚜开始迁飞;当日平均气温≥15 ℃、最高气温≥22 ℃、日照时数≥7 h、平均相对湿度≤65%,春迁蚜大量迁飞.在迁飞初期和中期,春迁蚜迁飞数随气温升高而增加.当天气条件适宜时,春迁蚜日迁飞数量的变化为单峰型,前期和末期低、中期高;当迁飞期内遭遇激烈降温,日迁飞数量波动较大,呈双峰或多峰型,同时迁飞期延长、迁飞率和单位面积迁飞量下降.相关分析与主成分分析结果:春迁蚜日迁飞数与平均气温、日最高气温和日照时数呈极显著正相关(P<0.001),与平均相对湿度、最小相对湿度呈显著负相关(P<0.05),与日最低气温和降水量相关性不显著(P>0.1);表明温度和湿度是影响春迁蚜迁飞的关键因子,日照次之.  相似文献   
150.
Small rodents are key species in many ecosystems. In boreal and subarctic environments, their importance is heightened by pronounced multiannual population cycles. Alarmingly, the previously regular rodent cycles appear to be collapsing simultaneously in many areas. Climate change, particularly decreasing snow quality or quantity in winter, is hypothesized as a causal factor, but the evidence is contradictory. Reliable analysis of population dynamics and the influence of climate thereon necessitate spatially and temporally extensive data. We combined data on vole abundances and climate, collected at 33 locations throughout Finland from 1970 to 2011, to test the hypothesis that warming winters are causing a disappearance of multiannual vole cycles. We predicted that vole population dynamics exhibit geographic and temporal variation associated with variation in climate; reduced cyclicity should be observed when and where winter weather has become milder. We found that the temporal patterns in cyclicity varied between climatically different regions: a transient reduction in cycle amplitude in the coldest region, low‐amplitude cycles or irregular dynamics in the climatically intermediate regions, and strengthening cyclicity in the warmest region. Our results did not support the hypothesis that mild winters are uniformly leading to irregular dynamics in boreal vole populations. Long and cold winters were neither a prerequisite for high‐amplitude multiannual cycles, nor were mild winters with reduced snow cover associated with reduced winter growth rates. Population dynamics correlated more strongly with growing season than with winter conditions. Cyclicity was weakened by increasing growing season temperatures in the cold, but strengthened in the warm regions. High‐amplitude multiannual vole cycles emerge in two climatic regimes: a winter‐driven cycle in cold, and a summer‐driven cycle in warm climates. Finally, we show that geographic climatic gradients alone may not reliably predict biological responses to climate change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号