首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   271篇
  免费   46篇
  国内免费   37篇
  2024年   3篇
  2023年   8篇
  2022年   8篇
  2021年   12篇
  2020年   15篇
  2019年   23篇
  2018年   14篇
  2017年   17篇
  2016年   19篇
  2015年   17篇
  2014年   14篇
  2013年   33篇
  2012年   15篇
  2011年   15篇
  2010年   5篇
  2009年   14篇
  2008年   13篇
  2007年   15篇
  2006年   6篇
  2005年   13篇
  2004年   9篇
  2003年   7篇
  2002年   6篇
  2001年   8篇
  2000年   2篇
  1999年   8篇
  1998年   7篇
  1997年   4篇
  1996年   5篇
  1995年   2篇
  1994年   5篇
  1993年   3篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1979年   1篇
排序方式: 共有354条查询结果,搜索用时 468 毫秒
11.
A frequent response of organisms to climate change is altering the timing of reproduction, and advancement of reproductive timing has been a common reaction to warming temperatures in temperate regions. We tested whether this pattern applied to two common North American turtle species over the past three decades in Nebraska, USA. The timing of nesting (either first date or average date) of the Common Snapping Turtle (Chelydra serpentina) was negatively correlated with mean December maximum temperatures of the preceding year and mean May minimum and maximum temperatures in the nesting year and positively correlated with precipitation in July of the previous year. Increased temperatures during the late winter and spring likely permit earlier emergence from hibernation, increased metabolic rates and feeding opportunities, and accelerated vitellogenesis, ovulation, and egg shelling, all of which could drive earlier nesting. However, for the Painted Turtle (Chrysemys picta), the timing of nesting was positively correlated with mean minimum temperatures in September, October, December of the previous year, February of the nesting year, and April precipitation. These results suggest warmer fall, and winter temperature may impose an increased metabolic cost to painted turtles that impedes fall vitellogenesis, and April rains may slow the completion of vitellogenesis through decreased basking opportunities. For both species, nest deposition was highly correlated with body size, and larger females nested earlier in the season. Although average annual ambient temperatures have increased over the last four decades of our overall fieldwork at our study site, spring temperatures have not yet increased, and hence, nesting phenology has not advanced at our site for Chelydra. While Chrysemys exhibited a weak trend toward later nesting, this response was likely due to increased recruitment of smaller females into the population due to nest protection and predator control (Procyon lotor) in the early 2000s. Should climate change result in an increase in spring temperatures, nesting phenology would presumably respond accordingly, conditional on body size variation within these populations.  相似文献   
12.
Few studies have quantitatively projected changes in demography in response to climate change, yet doing so can provide important insights into the processes that may lead to population declines and changes in species distributions. Using a long‐term mark‐recapture data set, we examined the influence of multiple direct and indirect effects of weather on adult and juvenile survival for a population of Song Sparrows (Melospiza melodia) in California. We found evidence for a positive, direct effect of winter temperature on adult survival, and a positive, indirect effect of prior rainy season precipitation on juvenile survival, which was consistent with an effect of precipitation on food availability during the breeding season. We used these relationships, and climate projections of significantly warmer and slightly drier winter weather by the year 2100, to project a significant increase in mean adult survival (12–17%) and a slight decrease in mean juvenile survival (4–6%) under the B1 and A2 climate change scenarios. Together with results from previous studies on seasonal fecundity and postfledging survival in this population, we integrated these results in a population model and projected increases in the population growth rate under both climate change scenarios. Our results underscore the importance of considering multiple, direct, and indirect effects of weather throughout the annual cycle, as well as differences in the responses of each life stage to climate change. Projecting demographic responses to climate change can identify not only how populations will be affected by climate change but also indicate the demographic process(es) and specific mechanisms that may be responsible. This information can, in turn, inform climate change adaptation plans, help prioritize future research, and identify where limited conservation resources will be most effectively and efficiently spent.  相似文献   
13.
This interdisciplinary activity promotes science, technology, and language arts and is well suited for upper elementary grade students. In the activity, students' research about a teacher-assigned weather phenomenon facilitates their study of the weather. When they have completed their research, students word process a paper summarizing their findings and generate graphical representations of a weather phenomenon using Microsoft Paint software. The paper and the computer-generated graphical representation measure learning and provide insight into the level of student understanding that other assessment tools, such as quizzes, tests, and questioning techniques, do not provide.  相似文献   
14.
Upland birds are predicted to be particularly vulnerable to the effects of climate change, yet few studies have examined these effects on their breeding phenology and productivity. Laying dates of Red Grouse Lagopus lagopus scotica in the Scottish Highlands advanced by 0.5 days/year between 1992 and 2011 and were inversely correlated with pre‐laying temperature, with a near‐significant increase in temperature over this period. Earlier clutches were larger and chick survival was greater in earlier nesting attempts. However, chick survival was also higher in years with lower May temperatures and lower August temperatures in the previous year, the latter probably related to prey abundance in the subsequent breeding season. Although laying dates are advancing, climate change does not currently appear to be having an overall effect on chick survival of Red Grouse within the climate range recorded in this study.  相似文献   
15.
Past influenza pandemics appear to be characterized by multiple waves of incidence, but the mechanisms that account for this phenomenon remain unclear. We propose a simple epidemic model, which incorporates three factors that might contribute to the generation of multiple waves: (i) schools opening and closing, (ii) temperature changes during the outbreak, and (iii) changes in human behaviour in response to the outbreak. We fit this model to the reported influenza mortality during the 1918 pandemic in 334 UK administrative units and estimate the epidemiological parameters. We then use information criteria to evaluate how well these three factors explain the observed patterns of mortality. Our results indicate that all three factors are important but that behavioural responses had the largest effect. The parameter values that produce the best fit are biologically reasonable and yield epidemiological dynamics that match the observed data well.  相似文献   
16.
Predictions for the phase angle differences (ψ) between the activity rhythm and the zeitgeber for different skeleton photoperiods based on the phase response curve (PRC) and the free-running period (τ) of the field mouse Mus booduga were made. These predictions were based on two assumptions: (i) The PRC for light pulses of 1 h duration and ca 45 lx intensity should resemble the PRC for pulses of 15 min duration and 1000 lx intensity. (ii) One of the two light pulses (LP) constituting the skeleton photoperiod should always impinge upon that zone of the PRC which has a slope of < ?2. Experiments were performed to compare ψ under skeleton and complete photoperiods and also to test the assumptions made in predicting ψ. The results show that the basic oscillation underlying the activity rhythm of the field mouse Mus booduga undergoes a “phase-jump” when two brief light pulses (of 1 h duration) were used to mimic a photoperiod of 20 h. The ψ values obtained for skeleton photoperiods closely match the predicted values. Under complete photoperiods, the experimentally obtained values match the predictions only up to 16 h. We conclude therefore that beyond this photoperiod, two discrete light pulses may not be sufficient to simulate the effect of a complete photoperiod.  相似文献   
17.
18.
19.
This study assesses crop residues in the EU from major crops using empirical models to predict crop residues from yield statistics; furthermore it analyses the inter‐annual variability of those estimates over the period 1998‐2015, identifying its main drivers across Europe. The models were constructed based on an exhaustive collection of experimental data from scientific papers for the crops: wheat, barley, rye, oats, triticale, rice, maize, sorghum, rapeseed, sunflower, soybean, potato and sugarbeet. We discuss the assumptions on the relationship between yield and the harvest index, adopted by previous studies, to interpret the experimental data, quantify the uncertainties of these models, and establish the premises to implement them at regional scale –i.e., NUTS level 3– within the EU. To cope this, we created a consolidated sub‐national statistical data along with an algorithm able to aggregate (figures are provided at country level) and disaggregate (production at 25 km grid is provided assupplementary material) estimates. The total lignocellulosic biomass production in the EU28 over the review period, according to our models, is 419 Mt, from which wheat is the major contributor (155 Mt). Our results show that maize and rapeseed are the two crops with the highest residue yield, respectively 8.9 and 8.6 t ha‐1. The spatial analysis revealed that these three crops, which, according to our results, are feedstocks highly suitable a priori for second generation biofuels in the EU and are unevenly distributed across Europe. Weather fluctuation was identified as the major driver in residue production from cereals, while, in the case of starch crops and oilseeds – which are predominant in northern Europe – corresponded to the marked production trend likely influenced by the agricultural policies and agro‐management over the review period. Our results, among others, could help to understand and quantify the ecological boundaries of the bioeconomy from agriculture.  相似文献   
20.
Wildfire refugia (unburnt patches within large wildfires) are important for the persistence of fire‐sensitive species across forested landscapes globally. A key challenge is to identify the factors that determine the distribution of fire refugia across space and time. In particular, determining the relative influence of climatic and landscape factors is important in order to understand likely changes in the distribution of wildfire refugia under future climates. Here, we examine the relative effect of weather (i.e. fire weather, drought severity) and landscape features (i.e. topography, fuel age, vegetation type) on the occurrence of fire refugia across 26 large wildfires in south‐eastern Australia. Fire weather and drought severity were the primary drivers of the occurrence of fire refugia, moderating the effect of landscape attributes. Unburnt patches rarely occurred under ‘severe’ fire weather, irrespective of drought severity, topography, fuels or vegetation community. The influence of drought severity and landscape factors played out most strongly under ‘moderate’ fire weather. In mesic forests, fire refugia were linked to variables that affect fuel moisture, whereby the occurrence of unburnt patches decreased with increasing drought conditions and were associated with more mesic topographic locations (i.e. gullies, pole‐facing aspects) and vegetation communities (i.e. closed‐forest). In dry forest, the occurrence of refugia was responsive to fuel age, being associated with recently burnt areas (<5 years since fire). Overall, these results show that increased severity of fire weather and increased drought conditions, both predicted under future climate scenarios, are likely to lead to a reduction of wildfire refugia across forests of southern Australia. Protection of topographic areas able to provide long‐term fire refugia will be an important step towards maintaining the ecological integrity of forests under future climate change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号