首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15703篇
  免费   1090篇
  国内免费   2181篇
  2024年   43篇
  2023年   297篇
  2022年   372篇
  2021年   508篇
  2020年   504篇
  2019年   636篇
  2018年   585篇
  2017年   518篇
  2016年   561篇
  2015年   606篇
  2014年   849篇
  2013年   1093篇
  2012年   661篇
  2011年   775篇
  2010年   597篇
  2009年   833篇
  2008年   868篇
  2007年   809篇
  2006年   733篇
  2005年   754篇
  2004年   663篇
  2003年   598篇
  2002年   516篇
  2001年   413篇
  2000年   370篇
  1999年   346篇
  1998年   339篇
  1997年   256篇
  1996年   286篇
  1995年   265篇
  1994年   245篇
  1993年   208篇
  1992年   193篇
  1991年   194篇
  1990年   165篇
  1989年   129篇
  1988年   104篇
  1987年   100篇
  1986年   102篇
  1985年   130篇
  1984年   114篇
  1983年   75篇
  1982年   107篇
  1981年   95篇
  1980年   72篇
  1979年   56篇
  1978年   34篇
  1977年   35篇
  1976年   28篇
  1973年   37篇
排序方式: 共有10000条查询结果,搜索用时 484 毫秒
911.
Vitamin A (VA) is an essential nutrient needed in small amounts by humans and supports a wide range of biological actions. Retinol, the most common and most biologically active form of VA has also been found to inhibit peroxidation processes in membranes and it has been widely used as an ingredient with pharmaceutical and nutritional applications. VA is a lipophilic molecule, sensitive to air, oxidizing agents, ultraviolet light and low pH levels. For these reasons, it is necessary for VA to be protected against oxidation. Another disadvantage in the application of VA is its low solubility in aqueous media. Both issues (sensitivity and solubility) can be solved by employing encapsulation techniques. Liposomes can efficiently encapsulate lipid-soluble materials, such as VA. The encapsulated materials are protected from environmental and chemical changes. A new liposome/β-lactoglobulin formulation has been developed as a stable delivery system for VA. The aim of this study was the encapsulation of VA into β-lactoglobulin–liposome complexes, recently developed in our laboratory. The in vivo bioavailability characterization of VA was tested after administration in laboratory animals (mice). In this report, we demonstrate that VA could be efficiently entrapped and delivered in a phospholipid–sterol–protein membrane resembling system, a newly synthesized promising carrier. Based on this finding, the phospholipid–sterol–protein membrane resembling system may be one of the promising approaches to enhance VA absorption and to overcome the formulation difficulties associated with lipophilic means. The carrier system described here has huge potential in food fortification applications to treat VA deficiency.  相似文献   
912.
The aerosphere is utilized by billions of birds, moving for different reasons and from short to great distances spanning tens of thousands of kilometres. The aerosphere, however, is also utilized by aviation which leads to increasing conflicts in and around airfields as well as en‐route. Collisions between birds and aircraft cost billions of euros annually and, in some cases, result in the loss of human lives. Simultaneously, aviation has diverse negative impacts on wildlife. During avian migration, due to the sheer numbers of birds in the air, the risk of bird strikes becomes particularly acute for low‐flying aircraft, especially during military training flights. Over the last few decades, air forces across Europe and the Middle East have been developing solutions that integrate ecological research and aviation policy to reduce mutual negative interactions between birds and aircraft. In this paper we 1) provide a brief overview of the systems currently used in military aviation to monitor bird migration movements in the aerosphere, 2) provide a brief overview of the impact of bird strikes on military low‐level operations, and 3) estimate the effectiveness of migration monitoring systems in bird strike avoidance. We compare systems from the Netherlands, Belgium, Germany, Poland and Israel, which are all areas that Palearctic migrants cross twice a year in huge numbers. We show that the en‐route bird strikes have decreased considerably in countries where avoidance systems have been implemented, and that consequently bird strikes are on average 45% less frequent in countries with implemented avoidance systems in place. We conclude by showing the roles of operational weather radar networks, forecast models and international and interdisciplinary collaboration to create safer skies for aviation and birds.  相似文献   
913.
The mechanisms through which microbes communicate using signal molecules has inspired a great deal of research. Microbes use this exchange of information, known as quorum sensing (QS), to initiate and perpetuate infectious diseases in eukaryotic organisms, evading the eukaryotic defense system by multiplying and expressing their pathogenicity through QS regulation. The major issue to arise from such networks is increased bacterial resistance to antibiotics, resulting from QS-dependent mediation of the formation of biofilm, the induction of efflux pumps, and the production of antibiotics. QS inhibitors (QSIs) of diverse origins have been shown to act as potential antipathogens. In this review, we focus on the use of QSIs to counter diseases in humans as well as plants and animals of economic importance. We also discuss the challenges encountered in the potential applications of QSIs.  相似文献   
914.
Biotechnological production of fuels and chemicals from renewable resources is an appealing way to move from the current petroleum-based economy to a biomass-based green economy. Recently, the feedstocks that can be used for bioconversion or fermentation have been expanded to plant biomass, microbial biomass, and industrial waste. Several microbes have been engineered to produce chemicals from renewable resources, among which Escherichia coli is one of the best studied. Much effort has been made to engineer E. coli to produce fuels and chemicals from different renewable resources. In this paper, we focused on E. coli and systematically reviewed a range of fuels and chemicals that can be produced from renewable resources by engineered E. coli. Moreover, we proposed how can we further improve the efficiency for utilizing renewable resources by engineered E. coli, and how can we engineer E. coli for utilizing alternative renewable feedstocks. e.g. C1 gases and methanol. This review will help the readers better understand the current progress in this field and provide insights for further metabolic engineering efforts in E. coli.  相似文献   
915.
The aim of this study was to investigate the daily rhythms of hematological, biochemical and enzymatic parameters of the blood of a nocturnal model of fish (Lophiosilurus alexandri) bred in the laboratory (F1). Thirty-six juveniles were stocked in six tanks of a recirculation aquaculture system for 20 days. The fish were exposed to a light:dark cycle of 12:12 h and were fed 1% of biomass twice a day with commercial diet. The daily rhythms of hematological, biochemical and enzymatic parameters were then measured at six sampling times “zeitgeber time = ZT” at four-hour intervals under light:dark 12:12 h (lights on = ZT0, at 8.00 a.m). No differences were observed to alkaline phosphatase, glucose, cortisol, aspartate aminotransferase, superoxide dismutase, total protein and hematocrit (p > 0.05). However, white blood cell count, Lymphocytes (LYN), Neutrophils (NEU), Eosinophil and Neutrophils to Lymphocytes ratio were significant different between sample times (p < 0.05). Also, a significant difference in alanine transaminase was observed, with a peak of production at nighttime. In contrast, glutathione peroxidase peaked at 8:00. Uric acid, magnesium and Calcium (Ca++) showed statistically significant differences (p < 0.05). A significant difference was observed (p < 0.05), with a peak of albumin at 08:00 and triglycerides at 12:00, while cholesterol was low (p < 0.05) at 08:00 and higher from 12:00 to 04:00. Cosinor analysis revealed also rhythmicity to SOD, UA, Mg and Ca++, ALB and CHO (p < 0.05). In conclusion, the time of day must be considered a key factor when using blood parameters as biomarkers for disease, health and welfare in the L. alexandri aquaculture.  相似文献   
916.
917.
Circular RNAs (circRNAs) are novel noncoding RNAs and play crucial roles in various biological processes. However, little is known about the functions of circRNAs in osteogenic differentiation. The current study aimed to investigate the differential expression of circRNAs in rat dental follicle cells (rDFCs) during osteogenic differentiation, identified by RNA high-throughput sequencing and quantitative real-time polymerase chain reaction. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to further explore the biofunctions of circRNA biofunctions. Two hundred sixty-six differentially-expressed circRNAs that are involved in several important signaling pathways, including mitogen-activated protein kinases (MAPK) and transforming growth factor-β (TGF-β) signaling pathways were revealed. Among these, circFgfr2 and its predicted downstream targets, miR-133 and BMP6 (bone morphogenetic protein-6), were identified both in vivo and in vitro. For further validation, circFgfr2 was overexpressed in rDFCs, the results showed that the expression of miR-133 was downregulated and the expression of BMP6 was upregulated. Taken together, the results revealed the circRNA expression profiles and indicated the importance of circRNAs of rDFCs. In addition, circFgfr2 might promote osteogenesis by controlling miR-133/BMP6, which is a potential new target for the manipulation of tooth regeneration and bone formation.  相似文献   
918.
Increasing numbers of cancer patients survive and live longer than five years after therapy, but very often side effects of cancer treatment arise at same time. One of the side effects, chemotherapy-induced cognitive impairment (CICI), also called “chemobrain” or “chemofog” by patients, brings enormous challenges to cancer survivors following successful chemotherapeutic treatment. Decreased abilities of learning, memory, attention, executive function and processing speed in cancer survivors with CICI, are some of the challenges that greatly impair survivors' quality of life. The molecular mechanisms of CICI involve very complicated processes, which have been the subject of investigation over the past decades. Many mechanistic candidates have been studied including disruption of the blood-brain barrier (BBB), DNA damage, telomere shortening, oxidative stress and associated inflammatory response, gene polymorphism of neural repair, altered neurotransmission, and hormone changes. Oxidative stress is considered as a vital mechanism, since over 50% of FDA-approved anti-cancer drugs can generate reactive oxygen species (ROS) or reactive nitrogen species (RNS), which lead to neuronal death. In this review paper, we discuss these important candidate mechanisms, in particular oxidative stress and the cytokine, TNF-alpha and their potential roles in CICI.  相似文献   
919.
Synucleinopathies comprise a diverse group of neurodegenerative diseases including Parkinson's disease (PD), dementia with Lewy bodies, and multiple system atrophy. These share a common pathological feature, the deposition of alpha-synuclein (a-syn) in neurons or oligodendroglia. A-syn is highly conserved in vertebrates, but the primary sequence of mouse a-syn differs from that of human at seven positions. However, structural differences of their aggregates remain to be fully characterized. In this study, we found that human and mouse a-syn aggregated in vitro formed morphologically distinct amyloid fibrils exhibiting twisted and straight structures, respectively. Furthermore, we identified different protease-resistant core regions, long and short, in human and mouse a-syn aggregates. Interestingly, among the seven unconserved amino acids, only A53T substitution, one of the familial PD mutations, was responsible for structural conversion to the straight-type. Finally, we checked whether the structural differences are transmissible by seeding and found that human a-syn seeded with A53T aggregates formed straight-type fibrils with short protease-resistant cores. These results suggest that a-syn aggregates form sequence-dependent polymorphic fibrils upon spontaneous aggregation but become seed structure-dependent upon seeding.  相似文献   
920.
Black rot, caused by Xanthomonas campestris pv. campestris (Xcc), is the most devastating disease of brassica, but the mechanisms of basal or induced resistance in cabbage remain largely unknown. Here, we performed three experiments to investigate biochemical features associated with cabbage resistance to black rot. In the first experiment, biochemical changes were assessed in plants that were inoculated with a highly (UFPR 5) or a moderately (Xcc 10) aggressive Xcc isolate. In the second experiment, we examined the biochemical responses in two cultivars (Chato de Quintal [CQ] and Louco de Verão [LV], susceptible and moderately resistant to Xcc, respectively). Finally, we examined whether acibenzolar‐S‐methyl (ASM) could induce cabbage resistance to Xcc. Plants inoculated with the Xcc 10 isolate displayed higher activities of superoxide dismutase (SOD), peroxidase (POX) and ascorbate peroxidase (APX), whereas activities of chitinase (CHI), β‐1,3‐glucanase (GLU) and polyphenol oxidase (PPO) as well as the concentrations of hydrogen peroxide (H2O2) and malondialdehyde (MDA) were lower compared to plants inoculated with the UFPR 5 isolate. The resistance of the cultivar LV to Xcc was linked to increases in the activities of CHI, GLU, and PPO and decreases in the activities of SOD, POX and APX as well as in the concentrations of H2O2 and MDA relative to the cultivar CQ. In general, ASM‐sprayed plants displayed higher activities for the enzymes studied, which was associated with decreased disease symptoms and oxidative stress. Taken together, our results demonstrated that high activities of both defence and antioxidant enzymes played a major role in both basal and induced resistance of cabbage to black rot.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号