首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   15篇
  2024年   2篇
  2021年   2篇
  2020年   5篇
  2019年   6篇
  2018年   6篇
  2017年   10篇
  2016年   8篇
  2015年   7篇
  2014年   13篇
  2013年   29篇
  2012年   4篇
  2011年   3篇
  2009年   4篇
  2007年   3篇
  2006年   3篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  2000年   1篇
  1998年   1篇
  1993年   2篇
  1984年   1篇
排序方式: 共有118条查询结果,搜索用时 453 毫秒
21.
A stable and robust trypsin‐based biocatalytic system was developed and demonstrated for proteomic applications. The system utilizes polymer nanofibers coated with trypsin aggregates for immobilized protease digestions. After covalently attaching an initial layer of trypsin to the polymer nanofibers, highly concentrated trypsin molecules are crosslinked to the layered trypsin by way of a glutaraldehyde treatment. This process produced a 300‐fold increase in trypsin activity compared with a conventional method for covalent trypsin immobilization, and proved to be robust in that it still maintained a high level of activity after a year of repeated recycling. This highly stable form of immobilized trypsin was resistant to autolysis, enabling repeated digestions of BSA over 40 days and successful peptide identification by LC‐MS/MS. This active and stable form of immobilized trypsin was successfully employed in the digestion of yeast proteome extract with high reproducibility and within shorter time than conventional protein digestion using solution phase trypsin. Finally, the immobilized trypsin was resistant to proteolysis when exposed to other enzymes (i.e., chymotrypsin), which makes it suitable for use in “real‐world” proteomic applications. Overall, the biocatalytic nanofibers with trypsin aggregate coatings proved to be an effective approach for repeated and automated protein digestion in proteomic analyses.  相似文献   
22.
Conidial propagules encountered in foam samples of three lotic sources in Western Ghat forests of India are reported. Nine species can be assigned to known genera of water-borne hyphomycetes. Five kinds of conidia could not be assigned to known genera. Some of the conidia resemble spore types reported from Africa, Thailand and Malaysia.  相似文献   
23.
An industrial health risk assessment was conducted for employees engaged in routine tasks in a military paint shop. These workers handle a variety of compounds, including chromates, volatile organic compounds, and isocyanates. A risk assessment conforming to well-accepted, widely used guidance was conducted. The site-specific assessment incorporated data on task durations and personal protective equipment (PPE) use. The estimated chronic daily intake (CDI) for routine on-site workers was compared to U.S. Environmental Protection Agency (U.S. EPA) Reference Doses (RfDs) to estimate the likelihood of non-cancer effects. When the U.S. EPA's Integrated Risk Information System (IRIS) lacked RfDs for compounds, efforts were made to utilize surrogates or guidance from other agencies. For carcinogenic effects the CDI was multiplied by the U.S. EPA slope factor and the resultant risk estimate compared to target incremental risk ranges. Using PPE recommended by the site's industrial hygiene department, it is anticipated that the U.S. EPA non-cancer threshold hazard index (HI) of 1.0 and target incremental cancer risk (R) of 10?4 to 10?6 will not be exceeded. However, under baseline modeling assumptions (i.e., no use of PPE), the concentrations of chemicals of potential concern (COPC) present in the air during routine operations suggest a potential health hazard. The baseline estimates emphasize the importance of proper PPE in the paint shop workplace and use of site-specific information in modeling.

  相似文献   

24.
Recent book     
In the present study, the overall economic impact of hull fouling on a mid-sized naval surface ship (Arleigh Burke-class destroyer DDG-51) has been analyzed. A range of costs associated with hull fouling was examined, including expenditures for fuel, hull coatings, hull coating application and removal, and hull cleaning. The results indicate that the primary cost associated with fouling is due to increased fuel consumption attributable to increased frictional drag. The costs related to hull cleaning and painting are much lower than the fuel costs. The overall cost associated with hull fouling for the Navy's present coating, cleaning, and fouling level is estimated to be $56M per year for the entire DDG-51 class or $1B over 15 years. The results of this study provide guidance as to the amount of money that can be reasonably spent for research, development, acquisition, and implementation of new technologies or management strategies to combat hull fouling.  相似文献   
25.
26.
The performance of Al2O3 atomic layer deposition (ALD) coatings for LiCoO2/natural graphite (LCO/NG) batteries is investigated, where various permutations of the electrodes are coated in a full battery. Coating both electrodes with ~1 nm of alumina as well as coating only the LCO (positive electrode) enables improved performance when cycling at high voltage, where the LCO is known to degrade. However, we found that coating only the NG (negative electrode) also improves the performance of the whole battery when cycling at high voltage. Under these conditions, the uncoated LCO (positive electrode) should degrade quickly, and the NG should be unaffected. A variety of characterization techniques show the surface reactions that occur on the negative electrode and positive electrode are related, resulting in the enhanced performance of the uncoated LCO.  相似文献   
27.
Enzyme-based systems represent a user- and environmentally-friendly alternative to current corrosive and/or toxic decontamination technologies used for microbial decontamination. Herein an easily deployable enzyme-nanosupport hybrid system was developed for in situ generation of hypochlorous acid (HOCl), a strong decontaminant. The user-controlled strategy allowed co-immobilization of two different enzymes at a nanosupport interface and decontaminant generation through a chain reaction. For this, glucose oxidase was used as the working enzyme and co-immobilized onto multi-walled carbon nanotubes along with chloroperoxidase. Our hypothesis was that hydrogen peroxide produced at the nanosupport interface through the glucose oxidase enzymatic reaction can further be used as substrate by the co-immobilized CPO to convert (Cl?) into HOCl. The chemistry of the immobilization method, as well as the enzyme loading, activity, kinetics and enzyme stability at the nanointerface were evaluated. The multi-enzyme system was found to be able to initiate and propagate the chain reaction resulting in decontaminant production. The strong capability of HOCl generation can be viewed as an important first step toward creating self-sustainable microbial decontamination coatings to be used against various pathogens such as bacteria and spores.  相似文献   
28.
Previous studies have shown that bacterial biofilms formed from natural seawater (NSW) enhance the settlement of spores of the green alga Ulva linza, while single-species biofilms may enhance or reduce settlement, or have no effect at all. However, the effect of biofilms on the adhesion strength of algae, and how that may be influenced by coating/surface properties, is not known. In this study, the effect of biofilms formed from natural seawater and the marine bacterium Cobetia marina, on the settlement and the adhesion strength of spores and sporelings of the macroalga U. linza and the diatom Navicula incerta, was evaluated on Intersleek® 700, Intersleek® 900, poly(dimethylsiloxane) and glass. The settlement and adhesion strength of these algae were strongly influenced by biofilms and their nature. Biofilms formed from NSW enhanced the settlement (attachment) of both algae on all the surfaces while the effect of biofilms formed from C. marina varied with the coating type. The adhesion strength of spores and sporelings of U. linza and diatoms was reduced on all the surfaces biofilmed with C. marina, while adhesion strength on biofilms formed from NSW was dependent on the alga (and on its stage of development in the case of U. linza), and coating type. The results illustrate the complexity of the relationships between fouling algae and bacterial biofilms and suggest the need for caution to avoid over-generalisation.  相似文献   
29.
Polysiloxane coatings containing chemically-bound (“tethered”) quaternary ammonium salt (QAS) moieties were investigated for potential application as environmental-friendly coatings to control marine biofouling. A combinatorial/high-throughput approach was applied to the investigation to enable multiple variables to be probed simultaneously and efficiently. The variables investigated for the moisture-curable coatings included QAS composition, ie alkyl chain length, and concentration as well as silanol-terminated polysiloxane molecular weight. A total of 75 compositionally unique coatings were prepared and characterized using surface characterization techniques and biological assays. Biological assays were based on two different marine microorganisms, a bacterium, Cellulophaga lytica and a diatom, Navicula incerta, as well as a macrofouling alga, Ulva. The results of the study showed that all three variables influenced coating surface properties as well as antifouling (AF) and fouling-release (FR) characteristics. The incorporation of QAS moieties into a polysiloxane matrix generally resulted in an increase in coating surface hydrophobicity. Characterization of coating surface morphology revealed a heterogeneous, two-phase morphology for many of the coatings investigated. A correlation was found between water contact angle and coating surface roughness, with the contact angle increasing with increasing surface roughness. Coatings based on the QAS moiety containing the longest alkyl chain (18 carbons) displayed the highest micro-roughness and, thus, the most hydrophobic surfaces. With regard to AF and FR properties, coatings based on the 18 carbon QAS moieties were very effective at inhibiting C. lytica biofilm formation and enabling easy removal of Ulva sporelings (young plants) while coatings based on the 14 carbon QAS moities were very effective at inhibiting biofilm growth of N. incerta.  相似文献   
30.
The role of reactive oxygen species (ROS) in electrochemical biofouling inhibition was investigated using a series of abiotic tests and settlement experiments with larvae of the barnacle Amphibalanus amphitrite, a cosmopolitan fouler. Larval settlement, a measure of biofouling potential, was reduced from 43% ± 14% to 5% ± 6% upon the application of pulsed electric signals. The application of ROS scavengers such as glutathione and catalase counteracted the inhibitory effects of the electric signals, allowing settlement, and thus indicating that ROS are antifouling agents. Based on the experimental evidence, the proposed mechanism for ROS-based fouling prevention with interdigitated electrodes involved the electrochemical generation of hydrogen peroxide by oxygen reduction, and its likely reduction to hydroxyl radicals. Either hydroxyl radicals or products of hydroxyl radical reactions appeared to be the main deterrents of larval settlement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号