首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12999篇
  免费   1415篇
  国内免费   2440篇
  2024年   26篇
  2023年   224篇
  2022年   252篇
  2021年   389篇
  2020年   525篇
  2019年   607篇
  2018年   581篇
  2017年   552篇
  2016年   590篇
  2015年   548篇
  2014年   595篇
  2013年   884篇
  2012年   541篇
  2011年   619篇
  2010年   502篇
  2009年   702篇
  2008年   640篇
  2007年   719篇
  2006年   692篇
  2005年   640篇
  2004年   581篇
  2003年   510篇
  2002年   489篇
  2001年   425篇
  2000年   354篇
  1999年   355篇
  1998年   304篇
  1997年   303篇
  1996年   290篇
  1995年   257篇
  1994年   222篇
  1993年   216篇
  1992年   226篇
  1991年   157篇
  1990年   183篇
  1989年   151篇
  1988年   138篇
  1987年   141篇
  1986年   98篇
  1985年   135篇
  1984年   98篇
  1983年   57篇
  1982年   120篇
  1981年   69篇
  1980年   47篇
  1979年   32篇
  1978年   24篇
  1977年   13篇
  1976年   6篇
  1975年   8篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
81.
Abstract. Seedlings of Pinus radiata D. Don were grown in growth chambers for 22 weeks with two levels of phosphorus, under either well-watered or water-stressed conditions at CO2 concentrations of either 330 or 660mm3 dm?3. Plant growth, water use efficiency and conductance were measured and the relationship between these and needle photosynthetic capacity, water use efficiency and conductance was determined by gas exchange at week 22. Phosphorus deficiency decreased growth and foliar surface area at both CO2concentrations; however, it only reduced the maximum photosynthetic rates of the needles at 660 mm3 CO2 dm?3 (plants grown and measured at the same CO2 concentration). Water stress reduced growth and foliar surface area at both CO2 concentrations. Increases in needle photosynthetic rates appeared to be partly responsible for the increased growth at high CO2 where phosphorus was adequate. This effect was amplified by accompanying increases in needle production. Phosphorus deficiency inhibited these responses because it severely impaired needle photosynthetic function. The relative increase in growth in response to high CO2 was higher in the periodically water-stressed plants. This was not due to the maintenance of cell volume during drought. Plant water use efficiency was increased by CO2 enrichment due to an increase in dry weight rather than a decrease in shoot conductance and, therefore, transpirational water loss. Changes in needle conductance and water use efficiency in response to high CO2 were generally in the same direction as those at the whole plant level. If the atmospheric CO2 level reaches the predicted concentration of 660 mm3 dm?3 by the end of next Century, then the growth of P. radiata will only be increased in areas where phosphorus nutrition is adequate. Growth will be increased in drought-affected regions but total water use is unlikely to be reduced.  相似文献   
82.
Abstract An artificial osmotic cell has been constructed using reverse osmosis membranes. The cell consisted of a thin film of an osmotic solution (thickness: 100 to 200 μm) containing a non-permeating solute and was bounded between the membrane and the front plate of a pressure transducer which continuously recorded cell turgor. The membrane was supported by metal grids to withstand positive and negative pressures (P). At maximum, negative pressures of up to –0.7 MPa (absolute) could be created within the film on short-term and pressures of up to –0.3 MPa could be maintained without cavitation for several hours. As with living plant cells, the application of osmotic solutions of a non-permeating solute resulted in monophasic relaxations of turgor pressure from which the hydraulic conductivity of the membrane (Lp) and the elastic modulus of the cell (?) could be estimated. The application of solutions with permeating solutes resulted in biphasic pressure relaxation curves (as for living cells) from which the permeability (Ps) and reflection (σs) coefficients could be evaluated for the given membrane. Lp, Ps, and σs were independent of P and did not change upon transition from the positive to the negative range of pressure. It is concluded that the artificial cell could be used to simulate certain transport properties of living cells and to study phenomena of negative pressure as they occur in the xylem and, perhaps, also in living cells of higher plants.  相似文献   
83.
Abstract. Portulacaria afra (L.) Jacq. is a perennial facultative CAM species showing a seasonal shift from C3 to CAM photosynthesis. The shift to CAM during the summer occurs despite continued irrigation of the plants. The authors examined the hypothesis that the seasonal shift to CAM occurred because of low transient water potentials. They measured changes in whole leaf water, osmotic and pressure potentials over the course of the shift. They also studied changes in enzyme activity to ascertain if PEP carboxylase and PEP carboxykinase were induced during the seasonal shift to CAM. Water potentials were high, from -0.1 to -0.5 MPa, predawn and midday, when the C3 pathway of photosynthesis was utilized. Osmotic potentials were constant, from -0.7 to - 0.8 MPa, indicating very little change in turgor. P. afra shifted to CAM indicated by large diurnal acid fluctuations (300 400 meq m−2) despite C3-like predawn water potentials. Midday water potentials usually decreased 0.2-0.7 MPa, while the osmotic potential remained unchanged or decreased slightly. Thus, a midday loss of turgor was associated with the use of the CAM pathway. The results support the hypothesis that the induction of CAM occurred due to low transient water potentials and may be partially mediated through the loss of turgor. The shift to CAM is only a partial induction with PEP carboxykinase showing high activity all year round while PEP carboxylase increases three-to five-fold over C3 levels. Relatively high levels of CAM enzyme activity enables the utilization of the CAM pathway in the winter and spring in response to high daytime temperatures and increased evaporative demand. These results would lead to an increase in water use efficiency during such periods when compared to other inducible CAM species.  相似文献   
84.
Gas exchange and abscisic acid content of Digitalis lanata EHRH. have been examined at different levels of plant water stress. Net photosynthesis, transpiration and conductance of attached leaves declined rapidly at first, then more slowly following the withholding of irrigation. The intercellular partial pressure of CO2 decreased slightly. The concentration of 2-cis(S)ABA increased about eight-fold in the leaves of non-irrigated plants as compared with well-watered controls. A close linear correlation was found between the ABA content of the leaves and their conductance on a leaf area basis. In contrast, the plot of net assimilation versus ABA concentration was curvilinear, leading to an increased efficiency of water use during stress. After rewatering, photosynthesis reached control values earlier than transpiration, leaf conductance and ABA content. From these data it is concluded that transpiration through the stomata is directly controlled by the ABA content, whereas net photosynthesis is influenced additionally by other factors.Possible reasons for the responses of photosynthesis and water use efficiency to different stress and ABA levels are discussed.Abbreviations A net CO2 assimilation - ABA abscisic acid - Ci intercellular CO2 concentration - g stomatal conductance - T transpiration - WUE water use efficiency  相似文献   
85.
ABSTRACT.
  • 1 The dung colonization and dung burial behaviour of twelve crepuscular/nocturnal tunnelling (paracoprid) species of beetles were examined in order to identify mechanisms which might facilitate resource (dung) partitioning. The species were selected from a diverse assemblage of dung beetles, the members of which coexist in the sandy-soil regions of Natal, South Africa.
  • 2 The pattern of dung colonization in relation to dung age was examined in the field using baited pitfall traps. Some species, e.g. Onitis deceptor Peringuey, Catharsius tricornutus De Geer and Copris elphenor Klug, showed a marked preference for fresh dung (1–2 days old) whereas other species, e.g. O. viridulus Boheman and Copris fallaciosus Gillet, preferred older dung (3–7 days old).
  • 3 Two distinct patterns of dung burial were recognized. In the Coprini, dung burial was complete within 24–48h of pad colonization, and the level of dung burial was similar in the laboratory and in the field. In the Onitini, dung burial occurred progressively over a 12-day period, although the timing of initiation of dung burial varied between species: in O. deceptor nearly all individuals had begun burial within 2 days of pad colonization, whereas only 20% of O. viridulus had commenced dung burial by that time. However, nearly all O. viridulus had buried substantial quantities of dung by day 12.
  • 4 The mass of dung buried per pair by the larger coprine beetles (100–300 g) and onitine beetles (400–1000 g) suggests that there is potential for inter- and intraspecific competition, even in pads colonized by relatively few beetles. The colonization and use of dung of different ages are discussed as means of resource partitioning in relation to the relative abilities of species to compete for dung.
  相似文献   
86.
Bethlenfalvay, G. J., Brown, M. S., Ames, R. N. and Thomas, R. S. 1988. Effects of drought on host and endophyte development in mycorrhizal soybeans in relation to water use and phosphate uptake. - Physiol. Plant. 72: 565–571.
Soybean [ Glycine max (L.) Merr.] plants were grown in pot cultures and inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe or provided with P fertilizer (non-VAM plants). After an initial growth period (21 days), plants were exposed to cycles of severe, moderate or no drought stress over a subsequent 28-day period by rewatering at soil water potentials of -1.0, -0.3 or -0.05 MPa. Dry weights of VAM plants were greater at severe stress and smaller at no stress than those of non-VAM plants. Phosphorus fertilization was applied to produce VAM and non-VAM plants of the same size at moderate stress. Root and leaf P concentrations were higher in non-VAM plants at all stress levels. All plants were stressed to permanent wilting prior to harvest. VAM plants had lower soil moisture content at harvest than non-VAM plants. Colonization of roots by G. mosseae did not vary with stress, but the biomass and length of the extraradical mycelium was greater in severely stressed than in non-stressed plants. Growth enhancement of VAM plants relative to P-fertilized non-VAM plants under severe stress was attributed to increased uptake of water as well as to more efficient P uptake. The ability of VAM plants to deplete soil water to a greater extent than non-VAM plants suggests lower permanent wilting potentials for the former.  相似文献   
87.
A soil nitrogen model was used for a 4-year simulation of nitrogen dynamics and nitrate leaching, both during grass ley growth and after ploughing a grass ley. Model results were compared with field measurements of soil mineral-N status and leaching. A soil water and heat model provided daily values for abiotic conditions, which were used as driving variables in the nitrogen simulation. Simulated values for mineral-N levels in the soil agreed well with field data for the first 3 years of the simulation. During the final year the model predicted considerably higher levels of soil mineral-N content compared with measurements. To reach the mineral-N level measured at the time of ploughing the ley, the simulated N-uptake by plants had to be increased by 8 g N m−2. Simulations of nitrate leaching suggested that estimates of leaching based on measurements in tile-drained plots can be considerably underestimated. Accurate quantification of leaching in tile-drained plots often requires additional information on water-flow paths. A substantial increase in simulated and measured values for the mineral-N content of the soil occurred after ploughing the ley. In the simulation, most of the increase was due to a high crop residue input and the absence of a growing crop after ploughing. Litter accumulations in the soil during the 4-year period contributed little to the increase in soil mineral-N.  相似文献   
88.
Almond plants (Amygdalus communis L.) of the Garrigues variety were grown in the field drip irrigated and rainfed. Leaf water potential (Ψ) and leaf conductance (g1) were determined throughout one growing season. Pre-dawn measurement for Ψ in the irrigated treatment was consistent through the growing season, whereas in the rainfed treatment it decreased gradually. Ψ values at midday (Ψ minimum) was closely dependent on atmospheric evaporative demand, and their recovery was quicker in the wet treatment than in the dry. The g1 values were higher in the wet than dry treatments, decreasing in both cases by leaf ageing. Maximum values for g1 were reached when evaporative demand was highest in the day. The relationship between Ψ and g1 revealed a decrease in the hysteresis throughout the growing season, being most marked in the dry treatment. The results highlight the close dependence of Ψ and g1 on evaporative demand, leaf ageing and irrigtion treatment during the growing season.  相似文献   
89.
Almond plants (Amygdalus communis L. cv. Garrigues) were grown in the field under drip irrigated and non irrigated conditions. Leaf water potential () and leaf conductance (g1) were determined at three different times of the growing season (spring, summer and autumn). The relationships between and g1 in both treatments showed a continuous decrease of g1 as decreased in spring and summer. Data from the autumn presented a threshold value of (approx. –2.7 MPa in dry treatment, and approx. –1.4 MPa in wet treatment) below which leaf conductance remained constant.  相似文献   
90.
Summary The water relations parameters and the osmoregulatory response ofEremosphaera viridis were investigated both by using the pressure probe technique and by analyzing the intracellular pool of osmotically active agents. In the presence of various concentrations of different salts a biphasic osmoregulatory response was recorded, consisting of a rapid decrease in turgor pressure due to water loss followed by an increase in turgor pressure to the original turgor pressure value (depending on the salt). The values of turgor pressure, volumetric elastic modulus and hydraulic conductivity depended on the composition of the media. Nonelectrolytes did not cause a turgor recovery after the initial water efflux. The second phase of turgor regulation in the presence of salts was characterised by the intracellular accumulation of ions and sugars and required at least 24 hr. Analysis of the cell sap showed that the increase in the internal osmotic pressure was mainly achieved by accumulation of sucrose. Additionally, accumulation of glucose was observed in illuminated cells in the presence of Rb and K. Electron micrographs suggested that the sucrose was produced by degradation of starch granules. Turgor pressure recovery after salt stress seemed to be dependent on temperature and is well correlated with the according photosynthetic activity. The data suggest that a temperature-dependent enzyme which is activated by potassium or rubidium is involved in the regulatory response.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号