首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15792篇
  免费   1748篇
  国内免费   2661篇
  20201篇
  2024年   63篇
  2023年   284篇
  2022年   299篇
  2021年   440篇
  2020年   585篇
  2019年   675篇
  2018年   694篇
  2017年   691篇
  2016年   706篇
  2015年   661篇
  2014年   773篇
  2013年   1133篇
  2012年   699篇
  2011年   812篇
  2010年   646篇
  2009年   884篇
  2008年   809篇
  2007年   881篇
  2006年   811篇
  2005年   753篇
  2004年   671篇
  2003年   602篇
  2002年   546篇
  2001年   442篇
  2000年   398篇
  1999年   397篇
  1998年   331篇
  1997年   333篇
  1996年   333篇
  1995年   281篇
  1994年   243篇
  1993年   258篇
  1992年   254篇
  1991年   176篇
  1990年   197篇
  1989年   172篇
  1988年   159篇
  1987年   156篇
  1986年   123篇
  1985年   160篇
  1984年   118篇
  1983年   79篇
  1982年   138篇
  1981年   87篇
  1980年   67篇
  1979年   46篇
  1978年   39篇
  1977年   26篇
  1976年   17篇
  1975年   13篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
171.
Ten species of aquatic macrophytes have been analyzed for seven environmental variables by means of a significance test. A synthetic view has been obtained through a cluster analysis for species and a principal component analysis for 17 variables which form the multidimensional space where we project the species habitats. Myriophyllum spicatum L., Najas marina L., Potamogeton crispus L., Potamogeton pectinatus L. and Zannichellia pedunculata Reichenb. are widely distributed in the Albufera. Ceratophyllum submersum L. and Ruppia maritima L. var. brevirostris Ag. are considered stenoic. The tolerance of Ceratophyllum submersum to salts is significantly low and that of Ruppia cirrhosa (Petagna) Grande and Ruppia maritima var. brevirostris significantly high. Ceratophyllum submersum has a significantly negative distribution with regard to chlorophyll a and phosphate concentrations. Ceratophyllum demersum L. and C. submersum primarily occur in nitrate-rich waters whereas Ruppia cirrhosa primarily occurs in low nitrate waters.  相似文献   
172.
A formula for the effective population size for the finite island model of subdivided populations is derived. The formula indicates that the effective size can be substantially greater than the actual number of individuals in the entire population when the migration rate among subpopulations is small. It is shown that the mean nucleotide diversity, coalescence time, and heterozygosity for genes sampled from the entire population can be predicted fairly well from the theory for randomly mating populations if the effective population size for the finite island model is used.  相似文献   
173.
The effect of simulated rainfall frequency on the pathogenicity of Pratylenchus zeae and P. brachyurus was studied in four greenhouse experiments. Corn and grain sorghum were watered at different intervals during predetermined cycles to create a gradient of water-stressed plants. Each experiment included nematode and uninoculated treatments. Growth reaction of plants to different frequencies of watering was significant but was not affected by the presence of nematodes. Pratylenchus zeae numbers differed among watering regimens on corn but not on sorghum. Numbers of P. brachyurus did not differ among watering regimens on corn or sorghum. Both lesion nematode species were harmful to corn, but sorghum increased plant growth in response to P. brachyurus. It is concluded that water stress is not the only environmental factor that influences the pathogenicity of these two species on corn and sorghum.  相似文献   
174.
We have developed the methodologies for typing and family studies to establish the modes of inheritance of water buffalo red cell acid phosphatase (Acp), protease inhibitor (Pi), and group-specific component (Gc) on isoelectric focusing and albumin (Alb), red cell -esterase-3 (Est-3), and catalase (Cat) on polyacrylamide gel electrophoresis. Family studies showed that Pi, Gc, Alb, and Cat are coded by autosomal genes with two codominant alleles, while Est-3 is autosomal with two codominant alleles and a recessive null allele and Acp exhibits three codominant alleles.This project was funded by the Australian Centre for International Agricultural Research through Grant PN 8364 and the Malaysian programme for Intensification of Research in Priority Areas through Grant IRPA 1-07-05-057.  相似文献   
175.
Protein extractions using aerosol OT (AOT)-isooctane reverse micelle solutions have been studied to explore the potential for separating and enriching proteins with the reversed micellar extraction. The effects of pH, ionic strength, and different cations of chlorides in a bulk aqueous phase and of AOT concentration in an organic phase on the partitioning of lysozyme and myoglobin and the solubilization of water are presented in detail. The extraction of lysozyme was affected by the concentration of potassium or barium but was almost independent of that of sodium or calcium, whose ionic diameter is smaller than that of potassium and barium. For the extraction of myoglobin, however, the effect of barium concentration was not appreciable. Lysozyme could be enriched into the reversed micellar phase up to 30 times the aqueous feed concentration. (c) 1993 John Wiley & Sons, Inc.  相似文献   
176.
Geert van Wirdum 《Hydrobiologia》1993,265(1-3):129-153
A survey of base-rich wetlands in The Netherlands is presented. The main area of their occurrence is the low-lying Holocene part of the country, until some thousand years ago a large and coherent wetland landscape: the Holland wetland. The development of various parts of the Holland wetland into marshes, fens and bogs can be understood from hydrological relations in mire basins, as recognized in the distinction of primary, secondary and tertiary mire basin stages. Presently, the remnants of the Holland wetland are separate base-rich wetlands. The succession of their vegetation reflects various abiotic conditions and human influences. Three main developmental periods are distinguished as regards these factors. The first, geological period of mire development is seen as a post-glacial relaxation, with the inertia due to the considerable mass of wetland as a stabilizing factor. Biological “grazing” influences, as an aspect of utilization by humans, converted base-rich wetlands to whole new types in the second, historical period. Presently, mass and harvesting have decreased in importance, and actual successions in terrestrializing turbaries seem to reflect rapidly changing environmental conditions. Human control could well become the most important factor in the future development of wetland nature. The present value of open fen vegetation strongly depends on the continuation of the historical harvesting. The development of wooded fen may help to increase the mass of wetland in the future. Best results in terms of biodiversity are expected when their base state is maintained through water management. The vegetation and hydrology of floating fens in terrestrializing turbaries is treated in some more detail. Various lines and phases in the succession are distinguished. Open fen vegetation at base-rich, yet nutrient-poor sites is very rich in species threatened elsewhere. The fast acidification of certain such fens is attributed to hydrological and management factors. This acidification is illustrated in the profile of a floating raft sample. At the scale of these small fens, the elemental structure comprising base-rich fen, transitional fen and bog vegetation, is not as stable as it was in the large Holland wetland. A critical role seems to be played by the supply of bases with the water influx. The changing base state is supposed to change the nutrient cycling to such an extent that it would be correct to call this trophic excitation of the ecosystem, rather than just eutrophication. Eutrophication indicates a quantitative reaction to an increased nutrient supply, the internal system being unaltered. The drainage of fens, resulting in an increased productivity of the vegetation, provides another example of excitation, to the effect that the functional system is dramatically changed internally.  相似文献   
177.
Summary Reproductive value (RV) and net reproductive output (R o) are frequently used fitness measures. We argue that they are only appropriate when intervals between reproductive events are fixed, as they are dimensionless generation-to-generation scalings with units offspring per parent. A fitness measure should account for two different effects of a decrease in generation time: (1) increased survival due to shorter exposure to mortality agents and (2) increased frequency of reproduction.R o andRV deal with the first of these two effects, while a measure with a physical dimensionper time [T–1] is needed to account for the second. The Malthusian growth parameter,r, meets this requirement and in situations where time to reproduction is variable, we propose, the instantaneous rate of spread of descendants (from an individual) be used instead ofR o. As an alternative toRV, we suggest using the instantaneous difference = –r, wherer is the population rate of increase. WhileRV andR o are dimensionless ratios, , and areper time rates which are appropriate in accounting for alterations in generation time.  相似文献   
178.
Soil and atmospheric droughts increasingly threaten plant survival and productivity around the world. Yet, conceptual gaps constrain our ability to predict ecosystem-scale drought impacts under climate change. Here, we introduce the ecosystem wilting point (ΨEWP), a property that integrates the drought response of an ecosystem's plant community across the soil–plant–atmosphere continuum. Specifically, ΨEWP defines a threshold below which the capacity of the root system to extract soil water and the ability of the leaves to maintain stomatal function are strongly diminished. We combined ecosystem flux and leaf water potential measurements to derive the ΨEWP of a Quercus-Carya forest from an “ecosystem pressure–volume (PV) curve,” which is analogous to the tissue-level technique. When community predawn leaf water potential (Ψpd) was above ΨEWP (=−2.0 MPa), the forest was highly responsive to environmental dynamics. When Ψpd fell below ΨEWP, the forest became insensitive to environmental variation and was a net source of carbon dioxide for nearly 2 months. Thus, ΨEWP is a threshold defining marked shifts in ecosystem functional state. Though there was rainfall-induced recovery of ecosystem gas exchange following soaking rains, a legacy of structural and physiological damage inhibited canopy photosynthetic capacity. Although over 16 growing seasons, only 10% of Ψpd observations fell below ΨEWP, the forest is commonly only 2–4 weeks of intense drought away from reaching ΨEWP, and thus highly reliant on frequent rainfall to replenish the soil water supply. We propose, based on a bottom-up analysis of root density profiles and soil moisture characteristic curves, that soil water acquisition capacity is the major determinant of ΨEWP, and species in an ecosystem require compatible leaf-level traits such as turgor loss point so that leaf wilting is coordinated with the inability to extract further water from the soil.  相似文献   
179.
Managing ecological communities requires fast detection of species that are sensitive to perturbations. Yet, the focus on recovery to equilibrium has prevented us from assessing species responses to perturbations when abundances fluctuate over time. Here, we introduce two data-driven approaches (expected sensitivity and eigenvector rankings) based on the time-varying Jacobian matrix to rank species over time according to their sensitivity to perturbations on abundances. Using several population dynamics models, we demonstrate that we can infer these rankings from time-series data to predict the order of species sensitivities. We find that the most sensitive species are not always the ones with the most rapidly changing or lowest abundance, which are typical criteria used to monitor populations. Finally, using two empirical time series, we show that sensitive species tend to be harder to forecast. Our results suggest that incorporating information on species interactions can improve how we manage communities out of equilibrium.  相似文献   
180.
Choanoflagellates and sponges feed by filtering microscopic particles from water currents created by the flagella of microvillar collar complexes situated on the cell bodies of the solitary or colonial choanoflagellates and on the choanocytes in sponges. The filtering mechanism has been known for more than a century, but only recently has the filtering process been studied in detail and also modelled, so that a detailed picture of the water currents has been obtained. In the solitary and most of the colonial choanoflagellates, the water flows freely around the cells, but in some forms, the cells are arranged in an open meshwork through which the water can be pumped. In the sponges, the choanocytes are located in choanocyte chambers (or choanocyte areas) with separate incurrent and excurrent canals/pores located in a larger body, which enables a fixed pattern of water currents through the collar complexes. Previous theories for the origin of sponges show evolutionary stages with choanocyte chambers without any opening or with only one opening, which makes separation of incurrent and excurrent impossible, and such stages must have been unable to feed. Therefore a new theory is proposed, which shows a continuous evolutionary lineage in which all stages are able to feed by means of the collar complexes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号