首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16288篇
  免费   1738篇
  国内免费   2875篇
  2024年   69篇
  2023年   323篇
  2022年   334篇
  2021年   533篇
  2020年   665篇
  2019年   804篇
  2018年   725篇
  2017年   772篇
  2016年   760篇
  2015年   744篇
  2014年   801篇
  2013年   1141篇
  2012年   632篇
  2011年   749篇
  2010年   628篇
  2009年   935篇
  2008年   886篇
  2007年   931篇
  2006年   820篇
  2005年   800篇
  2004年   698篇
  2003年   573篇
  2002年   583篇
  2001年   518篇
  2000年   442篇
  1999年   435篇
  1998年   358篇
  1997年   327篇
  1996年   324篇
  1995年   290篇
  1994年   242篇
  1993年   225篇
  1992年   241篇
  1991年   177篇
  1990年   199篇
  1989年   162篇
  1988年   144篇
  1987年   137篇
  1986年   110篇
  1985年   134篇
  1984年   106篇
  1983年   64篇
  1982年   120篇
  1981年   77篇
  1980年   52篇
  1979年   35篇
  1978年   25篇
  1977年   15篇
  1976年   7篇
  1975年   10篇
排序方式: 共有10000条查询结果,搜索用时 156 毫秒
801.
《植物生态学报》2016,40(12):1298
AimsThe objective of this study was to investigate the change pattern of leaves photosynthesis and stem sap flow of Tamarix chinensisin under different groundwater salinity, which can be served as a theoretical basis and technical reference for cultivation and management of T. chinensis in shallow groundwater table around Yellow River Delta.MethodsThree-year-old T. chinensis, one of the dominated species in Yellow River Delta, was selected. Plants were treated by four different salinity concentrations of groundwater—fresh water (0 g∙L-1), brackish water (3.0 g∙L-1), saline water (8.0 g∙L-1), and salt water (20.0 g∙L-1) under 1.2 m groundwater level. Light response of photosynthesis and the diurnal courses of leaf transpiration rate, stem sap flux velocity and environment factors under different groundwater salinity were determined via LI-6400XT portable photosynthesis system and a Dynamax packaged stem sap flow gauge based on stem-heat balance method, respectively.Important findings The result showed that groundwater salinity had a significant impact on photosynthesis efficiency and water consumption capacity of T. chinensis by influencing the soil salt. The net photosynthetic rate (Pn), maximum Pn, transpiration rate, stomatal conductance, apparent quantum yield and dark respiration rate increased first and then decreased with increasing groundwater salinity, while the water use efficiency (WUE) continuously decreased. The mean Pn under fresh water, brackish water and salt water decreased by 44.1%, 15.1% and 62.6%, respectively, compared with that under saline water (25.90 µmol∙m-2∙s-1). The mean WUE under brackish water, saline water and salt water decreased by 25.0%, 29.2% and 41.7%, respectively, compared with that under fresh water (2.40 µmol∙mmol-1). With the increase of groundwater salinity from brackish water to salt water, light saturation point of T. chinensisdecreased while the light compensation point increased, which lead to the decrease of light ecological amplitude and light use efficiency. Fresh water and brackish water treatment helped T. chinensis to use low or high level light, which could significantly improve the utilization rate of light energy. The decrease in Pn of T. chinensis was mainly due to non-stomatal limitation under treatment from saline water to fresh water, while the decrease in Pn of T. chinensis was due to stomatal limitation from saline water to salt water. With increasing groundwater salinity, stem sap flux velocity of T. chinensis increased firstly and then decreased, reached the maximum value under saline water. The mean stem sap flux velocity under fresh water, brackish water and salt water decreased by 61.8%, 13.1% and 41.9%, respectively, compared with that under saline water (16.96 g·h-1). Tamarix chinensis had higher photosynthetic productivity under saline water treatment, and could attained high WUE under severe water deprivation by transpiration, which was suitable for the growth of T. chinensis.  相似文献   
802.
GGB是抗旱负调控基因。为了获得拟南芥ggb突变体材料,构建了以拟南芥U6启动子驱动GGB sgRNA的CRISPR/Cas9基因组编辑载体。将构建好的编辑载体利用农杆菌介导的浸花法转化野生型拟南芥。对转基因后代GGB基因的测序结果分析发现,在靶位点处有缺失4个碱基和增加1个T碱基的2种突变体产生。分别对野生型拟南芥和上述2种ggb突变体进行半定量RT PCR分析结果显示,突变体材料中几乎检测不到GGB基因表达,说明获得了GGB基因敲除突变体。对野生型和ggb突变体叶片失水率、耐旱表型及单株种子量的测定结果表明,与野生型相比,拟南芥GGB基因突变后,叶片失水率显著减少,抗旱性明显增强,而单株种子量却并没有改变。研究表明,GGB是一种理想的作物分子育种的候选靶基因,获得的突变体为今后从农作物中克隆的GGB同源基因进行功能互补验证提供了有用的遗传材料。  相似文献   
803.
目的 探讨院内救治人员总协调制度对严重多发伤早期救治的作用,以进一步优化创伤病患救治流程。方法 选取2013—2014年在苏州市立医院救治的严重多发伤病人共130例为研究组,同时回顾2011—2012年苏州市立医院救治的严重多发伤病人共123例为对照组,比较研究组与对照组在院内术前时间、在院监护时间、早期漏诊率、早期死亡率及并发症发生率等指标的变化。结果 研究组病人的院内术前时间、在院监护时间较对照组显著缩短,早期漏诊率、早期死亡率和并发症发生率均显著降低。结论 院内救治人员总协调制度的执行可有效提高严重多发伤早期救治效率。  相似文献   
804.
Environmental flows are the main restoration technique used to ameliorate the ecological effects of regulation in rivers. However, their effectiveness has yet to be unanimously accepted. This study assessed the potential ecological benefits of the application of an environmental flow regime downstream of four dams and two weirs in the Upper Nepean River system, Sydney, Australia. Aquatic macroinvertebrates in three habitat types were sampled at water‐supply and low‐flow sites and unregulated sites in 1995 and 1996, prior to the environmental flows and in 2013 and 2014, approximately 13 years following the environmental flows. The macroinvertebrate assemblage structure was significantly different between regulated and reference sites and the number of taxa lower at water‐supply sites prior to the implementation of the environmental flows. Following the environmental flows, the assemblage structure became more similar to, although still significantly different from, the unregulated sites and the number of taxa was not significantly different between regulated and unregulated sites. Thirteen or approximately 30% of taxa indicative of unregulated rivers increased in frequency at regulated sites following the environmental flows. Despite potentially similar dispersal capabilities the remainder of the taxa failed to respond the new flow regimes. The mechanisms resulting in recovery of some taxa but not others remain unclear and require further investigation as the basis of future research and monitoring. Such information and knowledge would support the application of future environmental flow regimes as the primary mechanism to ameliorate the ecological effects of river regulation.  相似文献   
805.
中国北方部分地区水资源短缺,河道干涸,但夏季雨水资源潜力丰富。虽径流受到一定污染,但较于生活污水和工业废水,其污染程度更低,成分更简单。雨水通过低运行成本的人工湿地净化系统,可以实现较好的净化效果,满足河道景观需求和生态补水。城市管网雨水承载能力过重的城市边缘区,建设更新过程中进行雨污分流制度,更适于采用人工水质净化的方式将城市雨水管网中的雨水进行就近消纳,减轻城市雨水管网压力,并利用表面负荷率(ALR)来确定并校核人工湿地面积。在综合现在人工水质净化主流程预处理单元、人工湿地单元和消毒存储单元3个环节的基础上,以低运营成本、低管理成本、最优净水量为指向,引入物联网技术智能管控系统,行程具有能控制各级出水水质监测、多级管控、净水生态功能与游览景观功能相结合等多重优点的人工水质净化全流程,达到符合河道水质标准的净化效果。该流程为缓解北方城镇河道缺水现状、解决城市雨洪问题提供新思路。  相似文献   
806.
医疗设备是医院的重要资产,可在一定程度上反映医院的诊断能力以及现代化程度。新医改政策出台后,各地均大力推进医药卫生信息化建设,随着医疗设备种类的增加,给医院设备管理带来一定的困难,医疗设备信息化管理已成为医院不可或缺的一部分。我国的医疗设备信息化管理起步较晚,尚处于初级研究阶段,从而导致现阶段医疗设备信息化管理问题较多。本文简短叙述了医疗设备信息化管理现状,以及当前医疗设备信息化管理所存在的问题,并对所描述问题提出针对性的解决方案。  相似文献   
807.
Solar‐driven water splitting is in urgent need for sustainable energy research, for which accelerating oxygen evolution kinetics along with charge migration is the key issue. Herein, Mn3+ within π‐conjugated carbon nitride (C3N4) in form of Mn–N–C motifs is coordinated. The spin state (eg orbital filling) of Mn centers is regulated by controlling the bond strength of Mn–N. It is demonstrated that Mn serves as intrinsic oxygen evolution reaction (OER) site and the kinetics is dependent on its spin state with an optimized eg occupancy of ≈0.95. Specifically, the governing role of eg occupancy originates from the varied binding strength between Mn and OER intermediates. Benefiting from the rapid spin state‐mediated OER kinetics, as well as extended optical absorption (to 600 nm) and accelerated charge separation by intercalated metal‐to‐ligand state, Mn–C3N4 stoichiometrically splits pure water with H2 production rate up to 695.1 µmol g?1 h?1 under simulated sunlight irradiation (AM1.5), and achieves an apparent quantum efficiency of 4.0% at 420 nm, superior to most solid‐state based photocatalysts to date. This work for the first time correlates photocatalytic redox kinetics with the spin state of active sites, and suggests a nexus between photocatalysis and spin theory.  相似文献   
808.
Construction of well‐defined metal–organic framework precursor is vital to derive highly efficient transition metal–carbon‐based electrocatalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in water splitting. Herein, a novel strategy involving an in situ transformation of ultrathin cobalt layered double hydroxide into 2D cobalt zeolitic imidazolate framework (ZIF‐67) nanosheets grafted with 3D ZIF‐67 polyhedra supported on the surface of carbon cloth (2D/3D ZIF‐67@CC) precursor is proposed. After a low‐temperature pyrolysis, this precursor can be further converted into hybrid composites composed of ultrafine cobalt nanoparticles embedded within 2D N‐doped carbon nanosheets and 3D N‐doped hollow carbon polyhedra (Co@N‐CS/N‐HCP@CC). Experimental and density functional theory calculations results indicate that such composites have the advantages of a large number of accessible active sites, accelerated charge/mass transfer ability, the synergistic effect of components as well as an optimal water adsorption energy change. As a result, the obtained Co@N‐CS/N‐HCP@CC catalyst requires overpotentials of only 66 and 248 mV to reach a current density of 10 mA cm?2 for HER and OER in 1.0 m KOH, respectively. Remarkably, it enables an alkali‐electrolyzer with a current density of 10 mA cm?2 at a low cell voltage of 1.545 V, superior to that of the IrO2@CC||Pt/C@CC couple (1.592 V).  相似文献   
809.
Solar desalination is a promising and sustainable solution for water shortages in the future. Interfacial solar‐to‐heat conversion for desalination has attracted increasing attention in the past decades, due to the heat localization induced high thermal efficiency, simple structure, and low cost. In this review, the authors summarize and analyze the critical processes involved in such a solar desalination system, including the thermal conversion and transport, salt dissipation, and vapor manipulation. Mathematical models of heat transfer and salt dissipation are also built for quantitative analysis of systematic performance relative to properties of employed materials and system designs. Recent efforts devoted to improving the overall thermal efficiency, salt rejection, and water yield are then summarized. Based on the analysis and previous results, opportunities for further interfacial solar desalination development are highlighted.  相似文献   
810.
The paper analyses the current limitations of the constraints of decision and action processes in land-use, resource management and conservation policies and approaches, identifying their main factors, proposing alternative strategies to solve the present gaps and limitations. It identifies the need for a new paradigmatic approach based on innovative forms of involvement, commitment and individual and community rewarding systems. This approach is developed based on the characterization of the main drivers of land-use, resource management and conservation policies, namely α-perceptions (immediate and primary satisfaction) and k-perceptions (more mediate and complex consideration of satisfaction, implying long-term perceptions and collective benefits beyond the individual interests). It also analyses the effects of the introduction of new forms of income and incentives (such as trade-offs and payments for environmental services) or management approaches such as Ecological-Based Management or the use of Nature-Based Solutions. The main axioms and instruments necessary to build such a new paradigmatic approach (namely trade-offs, accountability and contractualization) are described. On this basis, it is possible to present a concept for an innovative institutional and social culture and a governance system aimed at an effective land-use, resource management and conservation policies. This governance concept is described and its sustaining individual, social and institutional drivers enunciated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号