首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11390篇
  免费   1151篇
  国内免费   2480篇
  15021篇
  2024年   51篇
  2023年   193篇
  2022年   240篇
  2021年   334篇
  2020年   446篇
  2019年   511篇
  2018年   477篇
  2017年   475篇
  2016年   510篇
  2015年   456篇
  2014年   519篇
  2013年   787篇
  2012年   453篇
  2011年   536篇
  2010年   426篇
  2009年   626篇
  2008年   575篇
  2007年   609篇
  2006年   605篇
  2005年   568篇
  2004年   518篇
  2003年   444篇
  2002年   427篇
  2001年   379篇
  2000年   329篇
  1999年   312篇
  1998年   265篇
  1997年   284篇
  1996年   276篇
  1995年   244篇
  1994年   212篇
  1993年   205篇
  1992年   220篇
  1991年   153篇
  1990年   177篇
  1989年   153篇
  1988年   133篇
  1987年   132篇
  1986年   105篇
  1985年   134篇
  1984年   95篇
  1983年   60篇
  1982年   122篇
  1981年   75篇
  1980年   56篇
  1979年   34篇
  1978年   26篇
  1977年   14篇
  1975年   11篇
  1974年   7篇
排序方式: 共有10000条查询结果,搜索用时 10 毫秒
901.
902.
When ecologically divergent taxa encounter one another, hybrid zones can form when reproductive isolation is incomplete. The location of such hybrid zones can be influenced by environmental variables, and an ecological context can provide unique insights into the mechanisms by which species diverge and are maintained. Two ecologically differentiated species of small benthic fishes, the endemic and imperiled prairie chub, Macrhybopsis australis, and the shoal chub, Macrhybopsis hyostoma, are locally sympatric within the upper Red River Basin of Texas. We integrated population genomic data and environmental data to investigate species divergence and the maintenance of species boundaries in these two species. We found evidence of advanced‐generation asymmetric hybridization and introgression, with shoal chub alleles introgressing more frequently into prairie chubs than the reciprocal. Using a Bayesian Genomic Cline framework, patterns of genomic introgression were revealed to be quite heterogeneous, yet shoal chub alleles were found to have likely selectively introgressed across species boundaries significantly more often than prairie chub alleles, potentially explaining some of the observed asymmetry in hybridization. These patterns were remarkably consistent across two sampled geographic regions of hybridization. Several environmental variables were found to significantly predict individual admixture, suggesting ecological isolation might maintain species boundaries.  相似文献   
903.
The increasing [CO2] in the atmosphere increases crop productivity. However, grain quality of cereals and pulses are substantially decreased and consequently compromise human health. Meta‐analysis techniques were employed to investigate the effect of elevated [CO2] (e[CO2]) on protein, zinc (Zn), and iron (Fe) concentrations of major food crops (542 experimental observations from 135 studies) including wheat, rice, soybean, field peas, and corn considering different levels of water and nitrogen (N). Each crop, except soybean, had decreased protein, Zn, and Fe concentrations when grown at e[CO2] concentration (≥550 μmol/mol) compared to ambient [CO2] (a[CO2]) concentration (≤380 μmol/mol). Grain protein, Zn, and Fe concentrations were reduced under e[CO2]; however, the responses of protein, Zn, and Fe concentrations to e[CO2] were modified by water stress and N. There was an increase in Fe concentration in soybean under medium N and wet conditions but nonsignificant. The reductions in protein concentrations for wheat and rice were ~5%–10%, and the reductions in Zn and Fe concentrations were ~3%–12%. For soybean, there was a small and nonsignificant increase of 0.37% in its protein concentration under medium N and dry water, while Zn and Fe concentrations were reduced by ~2%–5%. The protein concentration of field peas decreased by 1.7%, and the reductions in Zn and Fe concentrations were ~4%–10%. The reductions in protein, Zn, and Fe concentrations of corn were ~5%–10%. Bias in the dataset was assessed using a regression test and rank correlation. The analysis indicated that there are medium levels of bias within published meta‐analysis studies of crops responses to free‐air [CO2] enrichment (FACE). However, the integration of the influence of reporting bias did not affect the significance or the direction of the [CO2] effects.  相似文献   
904.
The unprecedented loss of biological diversity has negative impacts on ecosystems and the associated benefits which they provide to humans. Bromeliads have high diversity throughout the Neotropics, but they have been negatively affected by habitat loss and fragmentation, climate change, invasive species, and commercialization for ornamental purpose. These plants provide direct benefits to the human society, and they also form microecosystems in which accumulated water and nutrients support the communities of aquatic and terrestrial species, thus maintaining local diversity. We performed a systematic review of the contribution of bromeliads to ecosystem services across their native geographical distribution. We showed that bromeliads provide a range of ecosystem services such as maintenance of biodiversity, community structure, nutrient cycling, and the provisioning of food and water. Moreover, bromeliads can regulate the spread of diseases, and water and carbon cycling, and they have the potential to become important sources of chemical and pharmaceutical products. The majority of this research was performed in Brazil, but future research from other Neotropical countries with a high diversity of bromeliads would fill the current knowledge gaps and increase the generality of these findings. This systematic review identified that future research should focus on provisioning, regulating, and cultural services that have been currently overlooked. This would enhance our understanding of how bromeliad diversity contributes to human welfare, and the negative consequences that loss of bromeliad plants can have on communities of other species and the healthy functioning of the entire ecosystems.  相似文献   
905.
No effective, reliable treatment for stomatitis associated with cancer therapy has been established. This study focused on the its effectiveness of ozone nano-bubble water (ONBW) for the treatment of chemotherapy-induced stomatitis. Oral mucositis was induced in 14-week-old male Sprague-Dawley rats (N = 21). The animals were randomly divided into 3 groups: 7 without treatment (control); 7 treated with physiological salt solution (saline); and 7 treated with ONBW. Animals were weighed on Days 7, 9, 11, and 16. Stomatitis grade evaluation and bacterial count measurements were performed before rinsing in all animals 3, 5, and 10 days after acetic acid irritation (Days 9, 11, and 17 respectively). Weight loss after stomatitis creation was observed in all groups, with significant differences between the control and ONBW groups and between the saline and ONBW groups on Day 16. The stomatitis grade did not worsen during the experimental period in any group, with the lowest grades in the ONBW group on Days 11 and 16. Significant differences were identified between the control and ONBW groups and between the saline and ONBW groups on Days 11 and 16. Oral bacterial counts tended to decrease over time in all three groups, with the greatest decrease in the ONBW group, followed by the saline group. The decrease in the bacterial count was steepest in the ONBW group. Rinsing out the oral cavity with ONBW decreased bacterial counts and encouraged the healing of oral chemotherapy-induced stomatitis. ONBW may be an effective treatment for chemotherapy-induced stomatitis.  相似文献   
906.
Backgroundsome recent studies have suggested that the risks of colon and rectal cancer increase with exposure to higher concentrations of nitrates in drinking water. This study is a meta-analysis of relevant studies.Methodsliterature published up to June 2021 was accessed and final results abstracted. Two cohort studies and seven case-control studies were analysed, and one case-control study not used because of limited data. Mixed effects meta-regression analysis was used to assess trends in colon cancer, rectal cancer, and colon cancer considered together, with nitrate concentrations in drinking water.ResultsThe usually accepted exposure upper limit for nitrates is 11.3 mg/l NO3-N. However most studies assess a lower range, with only one study providing data over 8 mg/l. Colorectal cancer risk increased by 2.4% (95% limits 0.4–4.5%) per unit increase in nitrate concentration, over a range from very low values to mid-range values. Extrapolation to higher dosages has insufficient data. The trend for rectal cancer is less than that for colon cancer.ConclusionThe increase in colorectal cancer risk with increasing nitrate concentration is lower than in some recent studies, and applies only over a small range. Extrapolation of these results to higher nitrate levels is not warranted. The studies vary greatly in their design, the nitrate concentrations assessed, and in their results. This association is weak and inconsistent, and may be influenced by bias and confounding factors. Any association of drinking water nitrates with colorectal cancer risk is small, and is uncertain.  相似文献   
907.
Resolving the genetic basis of invasiveness and predicting invasions   总被引:1,自引:0,他引:1  
Weinig C  Brock MT  Dechaine JA  Welch SM 《Genetica》2007,129(2):205-216
Considerable effort has been invested in determining traits underlying invasiveness. Yet, identifying a set of traits that commonly confers invasiveness in a range of species has proven elusive, and almost nothing is known about genetic loci affecting invasive success. Incorporating genetic model organisms into ecologically relevant studies is one promising avenue to begin dissecting the genetic underpinnings of invasiveness. Molecular biologists are rapidly characterizing genes mediating developmental responses to diverse environmental cues, i.e., genes for plasticity, as well as to environmental factors likely to impose strong selection on invading species, e.g., resistance to herbivores and competitors, coordination of life-history events with seasonal changes, and physiological tolerance of heat, drought, or cold. Here, we give an overview of molecular genetic tools increasingly used to characterize the genetic basis of adaptation and that may be used to begin identifying genetic mechanisms of invasiveness. Given the divergent traits that affect invasiveness, “invasiveness genes” common to many clades are unlikely, but the combination of developmental genetic advances with further evolutionary studies and modeling may provide a framework for identifying genes that account for invasiveness in related species.  相似文献   
908.
Two upland rice varieties (IRAT109, IAPAR9) and one lowland rice variety (Zhenshan 97B) were planted in summer and treated with both normal (full water) and drought stress in the reproductive stage. Panicle water potential (PWP) and leaf water potential (LWP) were measured every 1.0-1.5 h over 24 h on sunny days. Both PWP and LWP of upland varieties started to decrease later, maintained a higher level and recovered more quickly than that of the lowland variety. The results show that PWP can be used as an indicator of plant water status based on the parallel daily changes, and the high correlation between PWP and LWP. Similar correlations were also observed between PWP, LWP and eight traits related to plant growth and grain yield formation. PWP seemed to be more effective for distinguishing the upland rice varieties with different drought-tolerant ability. Differences in PWP and LWP between upland and lowland rice varieties were also observed at noon even under normal water conditions, implying the incorporation of the drought-tolerant mechanism to improve the photosynthesis and yield of traditional paddy rice.  相似文献   
909.
Three diploid (Triticum boeoticum, AA; Aegilops speltoides, BB and Ae. tauschii, DD), two tetraplold (T. dlcoccoides,AABB and T. dicoccon, AABB) and one hexaploid (T. vulgare, AABBDD) varieties of wheat, which are very important in the evolution of wheat were chosen in this study. A pot experiment was carried out on the wheat under different water and nutrient conditions (i) to understand the differences in biomass, yield, water use efficiency (WUE), and nutrient (N, P and K) use efficiency (uptake and utilization efficiency) among ploldles in the evolution of wheat; (ii) to clarify the effect of water and nutrient conditions on water and nutrient use efficiency; and (iii) to assess the relationship of water and nutrient use efficiency in the evolution of wheat. Our results showed that from diploid to tetraploid then to hexaploid during the evolution of wheat, both root biomass and above-ground biomass increased initially and then decreased. Water consumption for transpiration decreased remarkably, correlating with the decline of the growth period, while grain yield, harvest index, WUE, N, P and K uptake efficiency, and N, P and K utilization efficiency increased significantly. Grain yield, harvest index and WUE decreased in the same order: T.vulgare > T. dicoccon > T. dicoccoides > Ae. tauschii > Ae. speltoides > T. boeoticum. Water stress significantly decreased root biomass, above-ground biomass, yield, and water consumption for transpiration by 47-52%, butremarkably increased WUE. Increasing the nutrient supply increased wheat above-ground biomass, grain yield,harvest index, water consumption for transpiration and WUE under different water levels, but reduced root biomass under drought conditions. Generally, water stress and low nutrient supply resulted in the lower nutrientuptake efficiency of wheat. However, water and nutrient application had no significant effects on nutrient utilization efficiency, suggesting that wheat nutrient utilization efficiency is mainly controlled by genotypes. Compared to theother two diploid wheats, Ae. squarrosa (DD) had significant higher WUE and nutrient utilization efficiency, Indicating that the D genome may carry genes controlling high efficient utilization of water and nutrient. Significant relationships were found between WUE and N, P and K utilization efficiency.  相似文献   
910.
目的:为了研究特定频谱波引起的水中离子浓度的变化以及电导率与频谱波间相互作用的规律,用特定频谱波对理化特性略有不同的纯净水、自来水、海水进行影响,研究其电导率的变化。方法:采用一元线性回归分析的方法对数据散点进行拟和,用方差分析来评价其拟合效果,以期发现其中的规律。结果:经过频谱波的影响各种水的电导率都有明显的提高,并且随着处理次数的增加,纯净水的电导率呈阶越式方式增加;自来水呈对数形式增加;而海水则表现为变化幅度微小。结论:造成这个现象的原因可能是由于水分子吸收了频谱波的能量,分子的平均动能增大造成的。这一过程使化学平衡(H2O)n≒xH2O (H2O)n-x和H2O≒ H OH-均向分解的方向运动,水中带电离子的浓度提高,因此电导率发生变化。而电导率提高方式的差异,则是水样在理化特性上的差异导致的。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号