首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11391篇
  免费   1157篇
  国内免费   2473篇
  2024年   51篇
  2023年   193篇
  2022年   240篇
  2021年   334篇
  2020年   446篇
  2019年   511篇
  2018年   477篇
  2017年   475篇
  2016年   510篇
  2015年   456篇
  2014年   519篇
  2013年   787篇
  2012年   453篇
  2011年   536篇
  2010年   426篇
  2009年   626篇
  2008年   575篇
  2007年   609篇
  2006年   605篇
  2005年   568篇
  2004年   518篇
  2003年   444篇
  2002年   427篇
  2001年   379篇
  2000年   329篇
  1999年   312篇
  1998年   265篇
  1997年   284篇
  1996年   276篇
  1995年   244篇
  1994年   212篇
  1993年   205篇
  1992年   220篇
  1991年   153篇
  1990年   177篇
  1989年   153篇
  1988年   133篇
  1987年   132篇
  1986年   105篇
  1985年   134篇
  1984年   95篇
  1983年   60篇
  1982年   122篇
  1981年   75篇
  1980年   56篇
  1979年   34篇
  1978年   26篇
  1977年   14篇
  1975年   11篇
  1974年   7篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
891.
Chlorantraniliprole seed treatments in rice provide effective suppression of rice water weevil populations in the United States; however, heavy reliance on prophylactic insecticide treatments as a sole strategy could destabilize management programs for this insect. The present research evaluated the compatibility of seed treatments with two other potential management tactics—plant resistance and shallow flooding–by conducting two split‐plot experiments in 2009 and 2011. In both experiments, no substantial antagonism was found among the 3 different tactics. Statistical interactions in these experiments arose from the strong and persistent effects of chlorantraniliprole on larval densities rather than incompatibility of tactics. In 2009, weevil densities differed among varieties and were significantly lower on the cultivar “Jefferson.” In 2011, weevil densities were reduced significantly in shallow‐flooded plots compared to deep‐flooded plots. Significant reductions in weevil numbers by chlorantraniliprole seed treatments, even at application rates 5 fold lower than commercially recommended rates, demonstrated the potential to reduce application rates of this highly potent larvicide. These latter results suggest that future studies on the relationship between chlorantraniliprole seed treatment rate and weevil fitness are warranted.  相似文献   
892.
目的:观察血管性痴呆模型(Vascular dementia,VD)大鼠海马组织内线粒体超微结构、线粒体膜电位与空间学习记忆能力的变化。方法:健康成年雄性Wistar大鼠30只,随机分为假手术组(SHAM)和血管性痴呆(VD)组,每组15只。VD组行双侧颈总动脉结扎手术制备血管性痴呆动物模型,SHAM组手术步骤同VD组,但不结扎颈总动脉。于术后第29天起行Morris水迷宫测试大鼠空间学习记忆功能,第1-5天为定位航行试验,评估大鼠空间学习能力,第6天进行空间探索试验,评估大鼠空间记忆功能。采用透射电镜技术、流式细胞学技术分别检测大鼠海马组织线粒体形态和功能变化。结果:与SHAM组相比,血管性痴呆模型组大鼠Morris水迷宫试验中逃避潜伏期明显延长(P0.01),在目标象限中停留时间显著缩短(P0.01),空间学习记忆能力受损,血管性痴呆模型组大鼠海马组织线粒体超微结构有明显损伤,线粒体膜电位明显下降(P0.01)。结论:线粒体损伤是血管性痴呆空间学习记忆功能障碍的重要机制之一。  相似文献   
893.
滞育是部分昆虫固有的适应逆境胁迫的遗传属性,七星瓢虫具有显著的滞育现象。本文以七星瓢虫雌成虫为试材,研究正常发育、滞育及滞育解除后3组处理试虫糖、脂、蛋白等关键代谢物质含量波动规律,总结滞育期间的代谢适应特点,解析其与过冷却能力的相关性,探索滞育对七星瓢虫逆境胁迫耐受力的促升效应,丰富七星瓢虫的滞育基础理论研究。利用物质干湿重差数法测定七星瓢虫的含水量;利用氯仿-甲醇(体积比为2∶1)法抽提除去自由水个体的脂肪;总糖、海藻糖、甘油、山梨醇及总蛋白的测定采用标准曲线法,利用SUN-II型智能昆虫过冷却点测定仪测定七星瓢虫的过冷却点(supercooling point,SCP)。结果表明,七星瓢虫滞育组含水量(58.11%±6.55%)显著低于正常发育组(68.49%±2.26%)和滞育解除组(65.84%±4.02%)(F=8.15,P0.01),滞育解除后含水量恢复至正常发育组水平;滞育组总糖(10.60±0.54μg/mg)、糖原(8.72±0.62μg/mg)、脂肪(173.66±19.01μg/mg)含量远远高于正常发育组和滞育解除组(F=46.57,P=0.0006;F=114.25,P0.0001;F=8.48,P0.01);滞育组总蛋白含量(49.20±3.80μg/mg)显著低于正常发育组(71.02±6.15μg/mg)和滞育解除组(69.45±4.66μg/mg)(F=46.57,P=0.0006);滞育组中海藻糖(1.31±0.27μg/mg)、甘油(1.74±0.50μg/mg)、山梨醇(9.84±3.02μg/mg)含量与正常发育组、滞育解除组无显著性差异(F=0.79,P=0.4946;F=1.33,P=0.3004;F=1.69,P=0.2387)。七星瓢虫在滞育条件下其过冷却点(-16.53℃±1.44℃)显著低于正常发育组(-14.07℃±1.33℃)和滞育解除组(-15.29℃±2.10℃)(F=13.47,P0.0001),经过滞育低温驯化后滞育解除组过冷却点较对照组有所降低。滞育诱发七星瓢虫发生显著的代谢适应,蛋白含量显著降低,抑制新陈代谢进程;糖脂含量显著升高,保障滞育维持及解除后发育的能量需求;七星瓢虫滞育属糖原积累型;滞育个体过冷却点大幅下降,耐寒性显著提升。  相似文献   
894.
Background: Long-term climate trends in mountain systems often vary strongly with elevation.

Aims: To evaluate elevation dependence in long-term precipitation trends in subalpine forest and alpine tundra zones of a mid-continental, mid-latitude North American mountain system and to relate such dependence to atmospheric circulation patterns.

Methods: We contrasted 59-year (1952–2010) precipitation records of two high-elevation climate stations on Niwot Ridge, Colorado Front Range, Rocky Mountains, USA. The sites, one in forest (3022 m a.s.l.) and the other in alpine tundra (3739 m), are closely located (within 7 km horizontally, ca. 700 m vertically), but differ with respect to proximity to the mountain-system crest (the Continental Divide).

Results: The sites exhibited significant differences in annual and seasonal precipitation trends, which depended strongly on their elevation and distance from the Continental Divide. Annual precipitation increased by 60 mm (+6%) per decade at the alpine site, with no significant change at the subalpine site. Seasonally, trends at the alpine site were dominated by increases in winter, which we suggest resulted from an increase in orographically generated precipitation over the Divide, driven by upper-air (700 hPa) north-westerly flow. Such a change was not evident at the subalpine site, which is less affected by orographic precipitation on north-westerly flow.

Conclusions: Elevation dependence in precipitation trends appears to have arisen from a change in upper-air flow from predominantly south-westerly to north-westerly. Dependence of precipitation trends on topographic position and season has complex implications for the ecology and hydrology of Niwot Ridge and adjacent watersheds, involving interactions among physical processes (e.g. snowpack dynamics) and biotic responses (e.g. in phenologies and ecosystem productivity).  相似文献   
895.
Vegetation exerts large control on global biogeochemical cycles through the processes of photosynthesis and transpiration that exchange CO2 and water between the land and the atmosphere. Increasing atmospheric CO2 concentrations exert direct effects on vegetation through enhanced photosynthesis and reduced stomatal conductance, and indirect effects through changes in climatic variables that drive these processes. How these direct and indirect CO2 impacts interact with each other to affect plant productivity and water use has not been explicitly analysed and remains unclear, yet is important to fully understand the response of the global carbon cycle to future climate change. Here, we use a set of factorial modelling experiments to quantify the direct and indirect impacts of atmospheric CO2 and their interaction on yield and water use in bioenergy short rotation coppice poplar, in addition to quantifying the impact of other environmental drivers such as soil type. We use the JULES land‐surface model forced with a ten‐member ensemble of projected climate change for 2100 with atmospheric CO2 concentrations representative of the A1B emissions scenario. We show that the simulated response of plant productivity to future climate change was nonadditive in JULES, however this nonadditivity was not apparent for plant transpiration. The responses of both growth and transpiration under all experimental scenarios were highly variable between sites, highlighting the complexity of interactions between direct physiological CO2 effects and indirect climate effects. As a result, no general pattern explaining the response of bioenergy poplar water use and yield to future climate change could be discerned across sites. This study suggests attempts to infer future climate change impacts on the land biosphere from studies that force with either the direct or indirect CO2 effects in isolation from each other may lead to incorrect conclusions in terms of both the direction and magnitude of plant response to future climate change.  相似文献   
896.
High irradiance arid environments are promising, yet understudied, areas for biofuel production. We investigated the productivity and environmental trade‐offs of growing sorghum (Sorghum bicolor) as a biofuel feedstock in the low deserts of California (CA). Using a 5.3 ha experimental field in the Imperial Valley, CA, we measured aboveground biomass production and net ecosystem exchange of CO2 and H2O via eddy covariance over three growing periods between February and November 2012. Environmental conditions were extreme, with high irradiance, vapor pressure deficit (VPD), and air temperature throughout the growing season. Air temperature peaked in August with a maximum of 45.7 °C. Sorghum produced an annual aboveground biomass yield of 43.7 Mg per hectare. Net ecosystem exchange (NEE) was highest during the summer growth period and reached a maximum of ?68 μmol CO2 m?2 s?1. Water use efficiency, or biomass water ratio (BWR), was high (4.0 g dry biomass kg?1 H2O) despite high seasonal evapotranspiration (1094 kg H2O m?2). The BWR of sorghum surpassed that of many C4 biofuel candidate crops in the United States, as well as that of alfalfa which is currently widely grown in the Imperial Valley. Sorghum also outperformed many US biofuel crops in terms of radiation use efficiency (RUE), achieving 1.5 g dry biomass MJ?1. We found no evidence of saturation of NEE at high levels of photosynthetically active radiation (PAR) (up to 2250 μmol m?2 s?1). In addition, we found no evidence that NEE was inhibited by either high VPD or air temperature during peak photosynthetic phases. The combination of high productivity, high BWR, and high RUE suggests that sorghum is well adapted to this extreme environment. The biomass production rates and efficiency metrics spanning three growing periods provide fundamental data for future Life Cycle Assessments (LCA), which are needed to assess the sustainability of this sorghum biofuel feedstock system.  相似文献   
897.
898.
Iris pseudacorus L. has been widely used in aquatic ecosystem to remove nutrient and has achieved positive effects. However, little is known regarding the nutrient-removal performance and physiological responses of I. pseudacorus for brackish eutrophic water treatment due to high nutrients combined with certain salinity levels. In this study, I. pseudacorus-planted microcosms were established to evaluate the capacity of I. pseudacorus to remove excessive nutrients from fresh (salinity 0.05%) and brackish (salinity 0.5%) eutrophic waters. The degradation of total nitrogen and ammonia nitrogen were not affected by 0.5% salinity; 0.5% salinity promoted the degradation of nitrate nitrogen while severely inhibited the degradation of total phosphorus. Additionally, 0.5% salinity was found to induce stress responses quantified by measuring six physiological indexes. Compared to 0.05% salinity, 0.5% salinity resulted in significant decreases in the chlorophyll a, b and total chlorophyll contents of I. pseudacorus which closely related to photosynthesis (p < 0.05). Furthermore, the higher proline, malondialdehyde contents and antioxidant enzyme activities were detected in I. pseudacorus exposed to 0.5% salinity, which provided protection against reactive oxygen species. The results highlight that the cellular stress assays are efficient for monitoring the health of I. pseudacorus in salinity shock-associated constructed wetlands.  相似文献   
899.
In many of the world's semi-arid and arid regions, the increase in demand for good quality water associated with the gradual and irreversible salinisation of the soil and water have raised the development of techniques that facilitate the safe use of brackish and saline waters for agronomic purposes. This study aimed to evaluate the salinity reduction of experimental saline solutions through the ions uptake capability of purslane (Portulaca oleracea), as well as its biomass accumulation. The hydroponic system used contained three different nutrient solutions composed of fixed concentrations of macro and micronutrients to which three different concentrations of sodium chloride had been added. Two conditions were tested, clipped and intact plants. It was observed that despite there being a notable removal of magnesium and elevated biomass accumulation, especially in the intact plants, purslane did not present the expected removal quantity of sodium and chloride. We confirmed that in the research conditions of the present study, purslane is a saline-tolerant species but accumulation of sodium and chloride was not shown as previously described in the literature.  相似文献   
900.
This protocol describes a method by which a large collection of the leafy green vegetable lettuce (Lactuca sativa L.) germplasm was screened for likely drought-tolerance traits. Fresh water availability for agricultural use is a growing concern across the United States as well as many regions of the world. Short-term drought events along with regulatory intervention in the regulation of water availability coupled with the looming threat of long-term climate shifts that may lead to reduced precipitation in many important agricultural regions has increased the need to hasten the development of crops adapted for improved water use efficiency in order to maintain or expand production in the coming years. This protocol is not meant as a step-by-step guide to identifying at either the physiological or molecular level drought-tolerance traits in lettuce, but rather is a method developed and refined through the screening of thousands of different lettuce varieties. The nature of this screen is based in part on the streamlined measurements focusing on only three water-stress indicators: leaf relative water content, wilt, and differential plant growth following drought-stress. The purpose of rapidly screening a large germplasm collection is to narrow the candidate pool to a point in which more intensive physiological, molecular, and genetic methods can be applied to identify specific drought-tolerant traits in either the lab or field. Candidates can also be directly incorporated into breeding programs as a source of drought-tolerance traits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号