首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49238篇
  免费   3908篇
  国内免费   7624篇
  2024年   241篇
  2023年   973篇
  2022年   1298篇
  2021年   1603篇
  2020年   1712篇
  2019年   2281篇
  2018年   1948篇
  2017年   1747篇
  2016年   1715篇
  2015年   1628篇
  2014年   2396篇
  2013年   3406篇
  2012年   1953篇
  2011年   2246篇
  2010年   1742篇
  2009年   2353篇
  2008年   2286篇
  2007年   2522篇
  2006年   2239篇
  2005年   2100篇
  2004年   1806篇
  2003年   1728篇
  2002年   1610篇
  2001年   1291篇
  2000年   1126篇
  1999年   1074篇
  1998年   998篇
  1997年   934篇
  1996年   836篇
  1995年   784篇
  1994年   760篇
  1993年   699篇
  1992年   686篇
  1991年   623篇
  1990年   547篇
  1989年   496篇
  1988年   493篇
  1987年   410篇
  1986年   421篇
  1985年   642篇
  1984年   689篇
  1983年   388篇
  1982年   590篇
  1981年   547篇
  1980年   455篇
  1979年   340篇
  1978年   246篇
  1977年   256篇
  1976年   219篇
  1973年   187篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
Glucose metabolism in peripheral blood lymphocytes from the brown trout Salmo trutta has been studied. Glucose is taken up by means of a sodium-independent saturable process (K m=10.8 mmol·l-1), as well as by simple diffusion. Once within the cell, most of glucose is directed to lactate production through either the Embden-Meyerhof pathway or the hexose-monophosphate shunt. Rates of lactate formation are higher than rates of CO2 formation. Glutamine does not exert an effect on either glucose uptake or glucose metabolism. The present study provides information regarding the nature of energy sources for different cell types in salmonids.Abbreviations 3-OMG 3-O-methyl glucose - EM Embden-Meyerhoff pathway - G6D glucose-6-phosphate dehydrogenase - HK hexokinase - HMS hexose monophosphate shunt - ICDH isocitrate dehydrogenase - K m apparent Michaelis constant - LDH lactate dehydrogenase - MCB modified Cortland buffer - PBL peripheral blood lymphocytes - PFK fructose-6-phosphate kinase - PK pyruvate kinase - RBC red blood cells - V max maximal rate of uptake  相似文献   
942.
Trigeneric hybrids between the (Triticum aestivum ×Agropyron michnoi) F1 (CM, 2n=5x=35; ABDPP) and two winter rye (Secale cereale L., 2n=2x=14; RR) cultivars, Wugong 774 and AR-132, were synthesized. Such trigeneric hybrids could be used to transfer resistance genes for powdery mildew from rye to CM and subsequently to common wheat and to identify (1) the effects of the P genome ofAgropyron on the self-fertility of the hybrids and (2) the differences in genetic background between rye cultivars with marked differences in pollinating habit. The trigeneric hybrids varied widely in morphology and showed a high level of resistance to such diseases as barley yellow dwarf virus (BYDV), stripe rust, leaf rust, stem rust, and powdery mildew. Selfed and many backcross derivatives were obtained from the trigeneric hybrids. The results indicated that rye cvs Wugong 774 and AR132 arose from different gene pools and that the P genome ofAgropyron carries gene(s) responsible for chromosome segregation, leading to functional gamete formation and self-fertility of the hybrids. The F2 and BC1 plants could be obtained in two ways — fusion of the unreduced gametes and the assumed apomixis of unreduced female gametes in the trigeneric hybrid plant II-4 — which indicates that this trigeneric hybrid may be a special genetic stock. Chromosome pairing in the trigeneric hybrids and ways of producing wheat/rye and wheat/Agropyron translocations are discussed.  相似文献   
943.
The effect of elevated atmospheric CO2 on water distribution in the intact roots of Vicia faba L. bean seedlings grown in natural soil was studied noninvasively with proton (1H) nuclear magnetic resonance (NMR) imaging. Exposure of 24-d-old plants to atmospheric CO2-enriched air at 650 cm3 m?3 produced significant increases in water imaged in upper roots, hypogeal cotyledons and lower stems in response to a short-term drying-stress cycle. Above ground, drying produced negligible stem shrinkage and stomatal resistance was unchanged. In contrast, the same drying cycle caused significant depletion of water imaged in the same upper root structures in control plants subject to ambient CO2 (350 m3 m?3), and stem shrinkage and increased stomatal resistance. The results suggest that inhibition of transpiration caused by elevated CO2 does not necessarily result in attenuation of water transport from lower root structures. Inhibition of water loss from upper roots and lower stem in elevated CO2 environments may be a mitigating factor in assessing deleterious effects of greenhouse changes on crops during periods of dry climate.  相似文献   
944.
Dehydroepiandrosterone (DHEA) treatment of rats decreases gain of body weight without affecting food intake; simultaneously, the activities of liver malic enzyme and cytosolic glycerol-3-P dehydrogenase are increased. In the present study experiments were conducted to test the possibility that DHEA enhances thermogenesis and decreases metabolic efficiency via trans-hydrogenation of cytosolic NADPH into mitochondrial FADH2 with a consequent loss of energy as heat. The following results provide evidence which supports the proposed hypothesis: (a) the activities of cytosolic enzymes involved in NADPH production (malic enzyme, cytosolic isocitrate dehydrogenase, and aconitase) are increased after DHEA treatment; (b) cytosolic glycerol-3-P dehydrogenase may use both NAD+ and NADP+ as coenzymes; (c) activities of both cytosolic and mitochondrial forms of glycerol-3-P dehydrogenase are increased by DHEA treatment; (d) cytosol obtained from DHEA-treated rats synthesizes more glycerol-3-P during incubation with fructose-1,6-P2 (used as source of dihydroxyacetone phosphate) and NADP+; the addition of citratein vitro further increases this difference; (e) mitochondria prepared from DHEA-treated rats more rapidly consume glycerol-3-P added exogenously or formed endogenously in the cytosol in the presence of fructose-1,6-P2 and NADP+.  相似文献   
945.
The interactions of VO2+ with phytate to form both soluble and insoluble complexes, have been studied by electronic absorption spectroscopy. A soluble 1∶1 VO2+: phytate complex is formed at pH <1. At higher pH-values insoluble complexes are produced. Two different solid complexes, obtained respectively at pH=2 and 4, were isolated and characterized. The maximal bonding ratio of VO2+: phytate was found to be 4, on the basis of a pH binding profile.  相似文献   
946.
Twenty-four weanling male Wistar rats were divided into four groups fed diets containing adequate or deficient levels of selenium (0.5 ppm [+ Se] or <0.02 ppm [−Se] and protein (15% [+Pro] or 5% [−Pro]), but adequate levels of all other nutrients for 4 wk to determine the effects of Se deficiency and protein deficiency on tissue Se and glutathione peroxidase (GSHPx) activity in rats. Plasma, heart, liver, and kidney Se and GSHPx were significantly lower in Se-deficient groups in relation to Se-sufficient groups. In Se-deficient groups, Se and GSHPx were significantly higher in −Se−Pro rats in heart, liver, and kidney. Data analysis showed that there were significant interaction effects between dietary Se and protein on Se and GSHPx of rats. It is assumed that under the condition of Se deficiency. a low level of protein may decrease Se and GSHPx utilization, increase GSHPx synthesis, and result in Se redistribution. This could account for high levels of Se and GSHPx in the −Se−Pro rats compared to −Se+Pro rats.  相似文献   
947.
Serum copper concentration increases significantly (p<0.01) in rats with experimental atherosclerosis compared to a control group. The serum zinc, the zinc, and copper concentration in abdominal aorta and in liver decreases significantly (p<0.05) compared to the control group. Administration of copper sulfate for 100 d in these animals induces a significant increase of serum copper (p<0.01), decrease of serum cholesterol (p<0.05) and increase of liver copper concentration as compared with the group fed only a high cholesterol diet. In the aorta of these animals the copper concentration increases and edema and lipid infiltration are considerably less than in the group of animals fed only a high lipid diet.  相似文献   
948.
A new binding site for anions which inhibit the water oxidizing complex (WOC) of Photosystem II in spinach has been identified. Anions which bind to this site inhibit the flash-induced S2/S0 catalase reaction (2H2O22H2O+O2) of the WOC by displacing hydrogen peroxide. Using a mass spectrometer and gas permeable membrane to detect the 32O2 product, the yield and lifetime of the active state of the flash-induced catalase (to be referred to simply as flash-catalase) reaction were measured after forming the S2 or S0-states by a short flash. The increase in flash-catalase activity with H2O2 concentration exhibits a Km=10–20 mM, and originates from an increase in the lifetime by 20-fold of the active state. The increased lifetime in the presence of peroxide is ascribed to formation of the long-lived S0-state at the expense of the unstable S2-state. The anion inhibition site differs from the chloride site involved in stimulating the photolytic water oxidation reaction (2H2OO2+4e-+4H+). Whereas water oxidation requires Cl- and is inhibited with increasing effectiveness by F-CN-N3 -, the flash-catalase reaction is weakly inhibited by Cl-, and with increasing effectiveness by F-CN-, N3 -. Unlike water oxidation, chloride is unable to suppress or reverse inhibition of the flash-catalase reaction caused by these anions. The inhibitor effectiveness correlates with the pKa of the conjugate acid, suggesting that the protonated species may be the active inhibitor. The reduced activity arises from a shortening of the lifetime of the flash-induced catalase active state by 3–10 fold owing to stronger anion binding in the flash-induced states, S2 and S0, than in the dark S-states, S1 and S-1. To account for the paradoxical result that higher anion concentrations are required to inhibit at lower H2O2 concentrations, where S2 forms initially after the flash, than at higher H2O2 concentrations, where S0 forms initially after the flash, stronger anion binding to the S0-state than to the S2-state is proposed. A kinetic model is given which accounts for these equilibria with anions and H2O2. The rate constant for the formation/release of O2 by reduction of S2 in the WOC is <0.4 s-1.Abbreviations ADRY acceleration of the deactivation reactions of the water splitting enzyme system Y - BTP bis [tris(hydroxymethyl)methylamino]-propane - CCCP carbonylcyanide m-chlorophenylhyrazone - DCBQ 2,5-dichlorobenzoquinone - DMBQ 2,3-dimethylbenzoquinone - WOC water oxidizing complex  相似文献   
949.
Approximately 20 protein subunits are associated with the PS II complex, not counting subunits of peripheral light-harvesting antenna complexes. However, it is not yet established which proteins specifically are involved in the water-oxidation process. Much evidence supports the concept that the D1/D2 reaction center heterodimer not only plays a central role in the primary photochemistry of Photosystem II, but also is involved in electron donation to P680 and in ligation of the manganese cluster. This evidence includes (a) the primary donor to P680 has been shown to be a redox-active tyrosyl residue (Tyr161) in the D1 protein, and (b) site-directed mutagenesis and computer-assisted modeling of the reaction center heterodimer have suggested several sites with a possible function in manganese ligation. These include Asp170, Gln165 and Gln189 of the D1 protein and Glu69 of the D2 protein as well as the C-terminal portion of the mature D1 protein. Also, hydrophilic loops of the chlorophyll-binding protein CP43 that are exposed at the inner thylakoid surface could be essential for the water-splitting process.In photosynthetic eukaryotes, three lumenal extrinsic proteins, PS II-O (33 kDa), PS II-P (23 kDa) and PS II-Q (16 kDa), influence the properties of the manganese cluster without being involved in the actual catalysis of water oxidation. The extrinsic proteins together may have multiple binding sites to the integral portion of PS II, which could be provided by the D1/D2 heterodimer and CP47. A major role for the PS II-O protein is to stabilize the manganese cluster. Most experimental evidence favors a connection of the PS II-P protein with binding of the Cl- and Ca2+ ions required for the water oxidation, while the PS II-Q protein seems to be associated only with the Cl- requirement. The two latter proteins are not present in PS II of prokaryotic organisms, where their functions may be replaced by a 10–12 kDa subunit and a newly discovered low-potential cytochrome c-550.Abbreviations PS II Photosystem II - PCC Pasteur Culture Collection  相似文献   
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号