首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49240篇
  免费   3859篇
  国内免费   7671篇
  60770篇
  2024年   241篇
  2023年   973篇
  2022年   1298篇
  2021年   1603篇
  2020年   1712篇
  2019年   2281篇
  2018年   1948篇
  2017年   1747篇
  2016年   1715篇
  2015年   1628篇
  2014年   2396篇
  2013年   3406篇
  2012年   1953篇
  2011年   2246篇
  2010年   1742篇
  2009年   2353篇
  2008年   2286篇
  2007年   2522篇
  2006年   2239篇
  2005年   2100篇
  2004年   1806篇
  2003年   1728篇
  2002年   1610篇
  2001年   1291篇
  2000年   1126篇
  1999年   1074篇
  1998年   998篇
  1997年   934篇
  1996年   836篇
  1995年   784篇
  1994年   760篇
  1993年   699篇
  1992年   686篇
  1991年   623篇
  1990年   547篇
  1989年   496篇
  1988年   493篇
  1987年   410篇
  1986年   421篇
  1985年   642篇
  1984年   689篇
  1983年   388篇
  1982年   590篇
  1981年   547篇
  1980年   455篇
  1979年   340篇
  1978年   246篇
  1977年   256篇
  1976年   219篇
  1973年   187篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
841.
植被综合生态质量时空变化动态监测评价模型   总被引:3,自引:3,他引:3  
钱拴  延昊  吴门新  曹云  徐玲玲  程路 《生态学报》2020,40(18):6573-6583
为了能掌握全国植被综合生态质量的高低及其时空变化,构建了既能反映植被生产力又能反映植被覆盖度的植被综合生态质量指数,建立了植被综合生态质量指数年际对比和多年变化趋势评价模型。利用构建的指数和评价模型,以2017年作为监测评价的当年,以2000—2017年作为评价的多年时段,对全国植被综合生态质量时空变化进行了监测评价。结果表明:(1)2017年全国大部地区植被综合生态质量指数高于2000—2016年多年平均值,生态质量偏好;2017年福建、广西、海南、广东、云南植被综合生态质量位居全国前五位,构建的植被综合生态质量指数及其年际对比模型可以定量反映全国植被综合生态质量的空间差异和年际差异。(2)全国有90.7%的区域2000—2017年植被综合生态质量指数呈提高趋势,东北地区西部、内蒙古东部、华北大部、西北地区东部、西南地区东部、华南西部等地生态质量指数提升明显,构建的植被综合生态质量指数多年变化趋势评价模型可以定量反映植被生态质量的多年变化趋势和幅度。(3)南方大部地区2000—2017年平均年植被综合生态质量指数在50.0以上,北方大部地区在50.0以下;我国中东部大部地区在20.0以上,西部大部地区在20.0以下,表明南方大部地区年植被生态质量好于北方、中东大部好于西部。可见,构建的植被综合生态质量指数及其年际对比和多年变化趋势评价模型,能够监测评价当年和多年全国植被综合生态质量的时空变化,可为掌握全国植被生态质量动态提供模型和方法。  相似文献   
842.
843.
EF-hand Ca2+-binding proteins (CBPs), such as S100 proteins (S100s) and calmodulin (CaM), are signaling proteins that undergo conformational changes upon increasing intracellular Ca2+. Upon binding Ca2+, S100 proteins and CaM interact with protein targets and induce important biological responses. The Ca2+-binding affinity of CaM and most S100s in the absence of target is weak (CaKD > 1 μM). However, upon effector protein binding, the Ca2+ affinity of these proteins increases via heterotropic allostery (CaKD < 1 μM). Because of the high number and micromolar concentrations of EF-hand CBPs in a cell, at any given time, allostery is required physiologically, allowing for (i) proper Ca2+ homeostasis and (ii) strict maintenance of Ca2+-signaling within a narrow dynamic range of free Ca2+ ion concentrations, [Ca2+]free. In this review, mechanisms of allostery are coalesced into an empirical “binding and functional folding (BFF)” physiological framework. At the molecular level, folding (F), binding and folding (BF), and BFF events include all atoms in the biomolecular complex under study. The BFF framework is introduced with two straightforward BFF types for proteins (type 1, concerted; type 2, stepwise) and considers how homologous and nonhomologous amino acid residues of CBPs and their effector protein(s) evolved to provide allosteric tightening of Ca2+ and simultaneously determine how specific and relatively promiscuous CBP-target complexes form as both are needed for proper cellular function.  相似文献   
844.
The liver is more prone to infections that cause fibrosis, such as steatosis, non-alcoholic steatohepatitis, hepatotoxicity, cirrhosis, and hepatocellular carcinoma. Also, Viral hepatitis is a common condition worldwide it worsens into chronic inflammation of the liver. One of the healthiest fruits is the pomegranate for the body and health, as it contains a high nutritional value of minerals, vitamins, antioxidants, so we worked on this investigation to magnify the therapeutic applications of pomegranate fruits (POF) and peel (POP) in carbon tetrachloride-injected rats (Ccl4). The experiment was carried out in a caged animal. All rats were fed a basal diet for one week before the study, and they were divided into seven groups, each with six rats. As a control negative group (C–ve), the first group sample was fed only the basal diet for 28 days. The remaining rats (n = 36) were injected with carbon tetrachloride (Ccl4). Five groups were fed varying concentrations of (5 %, 10 %, 15 % POF, 5 %, and 10 % pomegranate peel (POP)), whereas one group was diagnosed with the illness and disease, and didn't even feed the experimental diet. The results revealed significant increases in T.BIL, D.BIL, and BIL in the serum of rats injected by CC14 to induce hepatopathy compared to the healthy group (normal rats). Also, the best treatment considering the serum D.BIL was recorded for the 5 % POF.  相似文献   
845.
核磁共振(NMR)技术由于具有高效快速、不破坏土壤结构且对人体无害等优点,逐渐被应用到土壤学相关领域研究中。然而,土壤中顺磁物质的存在对核磁共振信号特征的影响仍不明确。本研究旨在揭示顺磁物质对不同类型土壤低场核磁共振(LF-NMR)信号特征和土壤含水量测定的影响。结果表明:土壤水的LF-NMR信号量最高可达150左右,土壤矿物、有机质和微生物等固相物质的LF-NMR信号量基本不超过0.3,相对可以忽略。质地和顺磁物质对土壤水的LF-NMR信号量测量有更大影响。LF-NMR仪器存在弛豫时间监测盲区,信号量损失主要是由于顺磁物质加速了水中氢质子的弛豫过程,导致小孔隙中水分反馈的极快的LF-NMR信号不能被监测设备捕获。对于顺磁物质含量较少的壤性潮土(1.2%)和黏壤性黑土(1.3%),LF-NMR信号量损失不大,其与土壤含水量呈线性关系;但对于黏粒含量(45.3%)和顺磁物质含量(4.0%)较高的黏性红壤,测定中会损失一部分LF-NMR信号量,监测到的LF-NMR信号量与土壤含水量不再呈线性关系。此外,外源添加顺磁物质(3.0 g·L-1的MnCl2溶液)也会降低黑土和红壤中可被监测的LF-NMR信号量,黑土和红壤的信号量最大损失率分别为41.0%和46.7%,极大地改变其与土壤含水量之间的定量关系。因此,在利用LF-NMR测量富含顺磁物质(>1.3%)或有外源顺磁物质进入的黏性土壤的含水量时,应先通过校正降低顺磁物质等对LF-NMR信号量的影响。研究结果对利用低场核磁共振技术准确分析土壤水分分布及土壤孔隙结构具有重要意义。  相似文献   
846.
Synthetic biology offers several routes for CO2 conversion into biomass or bio-chemicals, helping to avoid unsustainable use of organic feedstocks, which negatively contribute to climate change. The use of well-known industrial organisms, such as the methylotrophic yeast Pichia pastoris (Komagataella phaffii), for the establishment of novel C1-based bioproduction platforms could wean biotechnology from feedstocks with alternative use in food production. Recently, the central carbon metabolism of P. pastoris was re-wired following a rational engineering approach, allowing the resulting strains to grow autotrophically with a μmax of 0.008 h−1, which was further improved to 0.018 h−1 by adaptive laboratory evolution. Using reverse genetic engineering of single-nucleotide (SNPs) polymorphisms occurring in the genes encoding for phosphoribulokinase and nicotinic acid mononucleotide adenylyltransferase after evolution, we verified their influence on the improved autotrophic phenotypes. The reverse engineered SNPs lead to lower enzyme activities in putative branching point reactions and in reactions involved in energy balancing. Beyond this, we show how further evolution facilitates peroxisomal import and increases growth under autotrophic conditions. The engineered P. pastoris strains are a basis for the development of a platform technology, which uses CO2 for production of value-added products, such as cellular biomass, technical enzymes and chemicals and which further avoids consumption of organic feedstocks with alternative use in food production. Further, the identification and verification of three pivotal steps may facilitate the integration of heterologous CBB cycles or similar pathways into heterotrophic organisms.  相似文献   
847.
848.
Mendel's work in hybridization is ipso facto a study in inheritance. He is explicit in his interest to formulate universal generalizations, and at least in the case of the independent segregation of traits, he formulated his conclusions in the form of a law. Mendel did not discern, however, the inheritance of traits from that of the potential for traits. Choosing to study discrete non-overlapping traits, this did not hamper his efforts.  相似文献   
849.
CO2 and water vapour exchange rates of four alpine herbs namely: Rheum emodi, R. moorcroftianum, Megacarpaea polyandra and Rumex nepalensis were studied under field conditions at 3600 m (natural habitat) and 550 m altitudes. The effect of light and temperature on CO2 and water vapour exchange was studied in the plants grown at lower altitude. In R. moorcroftianum and R. nepalensis, the average photosynthesis rates were found to be about three times higher at 550 m as compared to that under their natural habitat. However, in M. polyandra, the CO2 exchange rates were two times higher at 3600 m than at 550 m but in R. emodi, there were virtually no differences at the two altitudes. These results indicate the variations in the CO2 exchange rates are species specific. The change in growth altitude does not affect this process uniformly.The transpiration rates in R. emodi and M. polyandra were found to be very high at 3600 m compared to 550 m and are attributed to overall higher stomatal conductance in plants of these species, grown at higher altitude. The mid-day closure of stomata and therefore, restriction of transpirational losses of water were observed in all the species at 550 m altitude. In addition to the effect of temperature and relative humidity, the data also indicate some endogenous rhythmic control of stomatal conductance.The temperature optima for photosynthesis was close to 30°C in M. polyandra and around 20°C in the rest of the three species. High temperature and high light intensity, as well as low temperature and high light intensity, adversely affect the net rate of photosynthesis in these species.Both light compensation point and dark respiration rate increased with increasing temperature.The effect of light was more prominent on photosynthesis than the effect of temperature, however, on transpiration the effect of temperature was more prominent than the effect of light intensity.No definite trends were found in stomatal conductance with respect to light and temperature. Generally, the stomatal conductance was highest at 20°C.The study reveals that all these species can easily be cultivated at relatively lower altitudes. However, proper agronomical methodology will need to be developed for better yields.  相似文献   
850.
Third instar tobacco hornworms (Manduca sexta L.: Sphingidae) on low dietary potassium had a lower relative growth rate than individuals on diets with potassium concentrations reflecting those in host-plants, due to decreased consumption rate, lower efficiencies of conversion of ingested and digested food (ECI and ECD), and a prolonged growth/feeding phase. Furthermore, these larvae, when placed on a diet with a moderate potassium concentration through the fourth stadium, ended up being smaller due to lower ECI and less biomass gained, and had a prolonged growth phase, which suggest an irreversible cost of the previous low potassium diet. Third instar hornworms on high potassium diets had lower ECI and ECD, and they had a prolonged growth phase. These individuals, when placed on a moderate potassium diet in the fourth stadium, gained less biomass, than those previously offered hostplant-like-potassium diets. Body potassium concentrations (% dw) at the end of the third stadium were similar among treatment groups. With increasing potassium concentrations in the diet, utilization efficiencies of potassium decreased and potassium concentrations in the frass increased. Correspondingly, water content (% fw) of the newly-molted fourth instar larvae declined with increasing potassium, indicating a passive loss of water during potassium excretion. Low and high dietary potassium reduced survivorship of third instar larvae; fourth instar caterpillars previously fed the low potassium diet also had poor survivorship. We conclude that, within the normal range of potassium concentrations in the hostplants, caterpillar performance is largely unaffected by potassium concentration, but that potassium-poor and potassium-rich diets, such as those hornworms may sometimes experience, can reduce growth and survivorship.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号